A self adjusting multirate algorithm based on the TR-BDF2 method

We propose a self adjusting multirate method based on the TR-BDF2 solver. The potential advantages of using TR-BDF2 as the key component of a multirate framework are highlighted. A linear stability analysis of the resulting approach is presented and the stability features of the resulting algorithm are analysed. The analysis framework is completely general and allows to study along the same lines the stability of self adjusting multirate methods based on a generic one step solver. A number of numerical experiments demonstrate the efficiency and accuracy of the resulting approach also the time discretization of hyperbolic partial differential equations.

[1]  Valeriu Savcenco Comparison of the asymptotic stability properties for two multirate strategies , 2007 .

[2]  W. Skamarock,et al.  The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations , 1992 .

[3]  Willem Hundsdorfer,et al.  A multirate time stepping strategy for stiff ordinary differential equations , 2007 .

[4]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[5]  Lawrence F. Shampine,et al.  Analysis and implementation of TR-BDF2 , 1996 .

[6]  Pak-Wing Fok,et al.  A Linearly Fourth Order Multirate Runge–Kutta Method with Error Control , 2016, J. Sci. Comput..

[7]  J. F. Andrus,et al.  Numerical Solution of Systems of Ordinary Differential Equations Separated into Subsystems , 1979 .

[8]  Willem Hundsdorfer,et al.  Analysis of a multirate theta-method for stiff ODEs , 2009 .

[9]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[10]  Giovanni Tumolo,et al.  A semi‐implicit, semi‐Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction , 2015 .

[11]  J. F. Andrus Stability of a multi-rate method for numerical integration of ODE's , 1993 .

[12]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985 .

[13]  Gustaf Söderlind,et al.  Evaluating numerical ODE/DAE methods, algorithms and software , 2006 .

[14]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[15]  Michael Baldauf,et al.  Linear Stability Analysis of Runge–Kutta-Based Partial Time-Splitting Schemes for the Euler Equations , 2010 .

[16]  John R. Rice,et al.  Split Runge-Kutta method for simultaneous equations , 1960 .

[17]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[18]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[19]  P. Rentrop,et al.  Multirate Partitioned Runge-Kutta Methods , 2001 .

[20]  Bratislav Tasic,et al.  Automatic Partitioning for Multirate Methods , 2007 .

[21]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..