Emerging specific selectivity towards mercury(II) cations in water through supramolecular assembly at interfaces

[1]  Yangguang Shi,et al.  DNA-Encoded MXene-Pt Nanozyme for Enhanced Colorimetric Sensing of Mercury Ions , 2022, Chemical Engineering Journal.

[2]  K. Ariga,et al.  The Past and the Future of Langmuir and Langmuir-Blodgett Films. , 2022, Chemical reviews.

[3]  L. De Cola,et al.  Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids , 2022, Chemical reviews.

[4]  Wei Ma,et al.  Functionalized Mesoporous Photonic Crystal Film for Ultrasensitive Visual Detection and Effective Removal of Mercury (II) Ions in Water , 2020, Advanced Functional Materials.

[5]  A. Bessmertnykh-Lemeune,et al.  Ultra-thin film sensors based on porphyrin-5-ylphosphonate diesters for selective and sensitive dual-channel optical detection of mercury(II) ions , 2020, Dyes and Pigments.

[6]  B. Liu,et al.  Recent advances in the design of colorimetric sensors for environmental monitoring , 2020 .

[7]  R. Abdel-Karim,et al.  Review—Nanostructured Materials-Based Nanosensors , 2020, Journal of The Electrochemical Society.

[8]  Ki‐Hyun Kim,et al.  Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media , 2019, TrAC Trends in Analytical Chemistry.

[9]  Yun‐Bao Jiang,et al.  Modular fabrication of fluorescent sensors via hydrogen-bonding self-assembly , 2019, Dyes and Pigments.

[10]  Riku Kubota,et al.  Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. , 2019, ACS sensors.

[11]  Joan M Racicot,et al.  Supramolecular Luminescent Sensors. , 2018, Chemical reviews.

[12]  S. Gosavi,et al.  Development of optical sensing probe for Hg(II) ions detection in ground water using Au, Hexanedithiol and Rhodamine B nanocomposite system , 2018, Sensors and Actuators B: Chemical.

[13]  N. Kaur,et al.  Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016 , 2018 .

[14]  A. Maaref,et al.  An electrochemical DNA biosensor for trace amounts of mercury ion quantification. , 2016, Journal of Water and Health.

[15]  Jinhua Li,et al.  Nanomaterial-based optical sensors for mercury ions , 2016 .

[16]  Amrita Ghosh,et al.  Anthraquinones as versatile colorimetric reagent for anions , 2016 .

[17]  A. Tsivadze,et al.  A metal-responsive interdigitated bilayer for selective quantification of mercury(ii) traces by surface plasmon resonance. , 2016, The Analyst.

[18]  A. Tsivadze,et al.  Design and evaluation of sensory systems based on amphiphilic anthraquinones molecular receptors , 2015 .

[19]  Claudia Caltagirone,et al.  Applications of Supramolecular Anion Recognition. , 2015, Chemical reviews.

[20]  Kun Chen,et al.  Design strategies for lab-on-a-molecule probes and orthogonal sensing. , 2015, Chemical Society reviews.

[21]  Emily E. Langdon-Jones,et al.  The coordination chemistry of substituted anthraquinones: Developments and applications , 2014 .

[22]  David C. Magri,et al.  A sodium-enabled 'Pourbaix sensor': a three-input AND logic gate as a 'lab-on-a-molecule' for monitoring Na+, pH and pE. , 2014, Chemical communications.

[23]  Roger Guilard,et al.  Colorimetric Hg2+ sensing in water: from molecules toward low-cost solid devices. , 2013, Organic letters.

[24]  S. El‐Safty,et al.  Mercury-ion optical sensors , 2012 .

[25]  I. Beletskaya,et al.  Rational design of aminoanthraquinones for colorimetric detection of heavy metal ions in aqueous solution. , 2011, Dalton transactions.

[26]  Robert Bogue,et al.  Nanosensors: a review of recent research , 2009 .

[27]  N. Kaur,et al.  Colorimetric recognition of Cu(II) by (2-dimethylaminoethyl)amino appended anthracene-9,10-diones in aqueous solutions: deprotonation of aryl amine NH responsible for colour changes. , 2006, Dalton transactions.

[28]  A. P. de Silva,et al.  Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. , 2006, Journal of the American Chemical Society.

[29]  Jordi Riu,et al.  Nanosensors in environmental analysis. , 2006, Talanta.

[30]  N. Kaur,et al.  Nature of 1-(2-aminoethylamino)-anthracene-9, 10-diones - Cu(II) Interactions Responsible for Striking Colour Changes , 2006 .

[31]  Oleg A. Raitman,et al.  A novel ultra-sensing composed Langmuir-Blodgett membrane for selective calcium determination in aqueous solutions , 2006 .

[32]  J. Burguera,et al.  Analytical applications of organized assemblies for on-line spectrometric determinations: present and future. , 2004, Talanta.

[33]  Jianrong Chen,et al.  Nanotechnology and biosensors. , 2004, Biotechnology advances.

[34]  P. Scrimin,et al.  Model membranes: developments in functional micelles and vesicles. , 1999, Current opinion in chemical biology.

[35]  T. C. Huang,et al.  X‐ray powder diffraction analysis of silver behenate, a possible low‐angle diffraction standard , 1993 .

[36]  D. Anderson,et al.  Determination of the lower limit of detection. , 1989, Clinical chemistry.

[37]  K. Fukuda,et al.  Monolayers and multilayers of anthraquinone derivatives containing long alkyl chains , 1976 .

[38]  I. Beletskaya,et al.  Palladium‐Catalysed Amination of 1,8‐ and 1,5‐Dichloroanthracenes and 1,8‐ and 1,5‐Dichloroanthraquinones , 2005 .

[39]  Y. Ishikawa,et al.  Formation of calixarene monolayers which selectively respond to metal ions , 1989 .