Dendritic mesoporous silica–titania nanospheres with enhanced photocatalytic activities

A series of dendritic mesoporous silica–titania nanospheres (DMSTN) with tunable Ti/Si molar ratios (φ = 0, 0.04, 0.13, and 0.4) has been successfully prepared through a post-treatment method. These materials possess high surface areas (450–550 m2 g−1), large pore volumes (0.9–1.04 cm3 g−1) and radially oriented mesopores (9.35–10.35 nm). The photodegradation of methylene green (an organic dye) was tested using DMSTN and a commercial photocatalyst (TiO2 Degussa P25) for comparative purposes. DMSTN exhibit excellent photocatalytic performance including higher adsorption capacity and better photocatalytic degradation performance compared to P25.

[1]  V. Polshettiwar,et al.  Atomic Layer Deposited (ALD) TiO2 on Fibrous Nano-Silica (KCC-1) for Photocatalysis: Nanoparticle Formation and Size Quantization Effect , 2016 .

[2]  Hongwei Zhang,et al.  Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery. , 2015, Small.

[3]  G. Zeng,et al.  An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. , 2015, Water research.

[4]  S. Koo,et al.  Enhanced photocatalytic activity of TiO2@mercapto-functionalized silica toward colored organic dyes , 2015, Journal of Materials Science.

[5]  Le He,et al.  Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper , 2014, Nature Communications.

[6]  H. Zou,et al.  Uniform TiO2–SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol , 2014 .

[7]  Miaomiao Ye,et al.  Nanocrystalline TiO₂-catalyzed photoreversible color switching. , 2014, Nano letters.

[8]  D. Zhao,et al.  Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. , 2014, Nano letters.

[9]  A. Wróblewska,et al.  Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation , 2013 .

[10]  Xiujian Zhao,et al.  Polymeric adsorption of methylene blue in TiO2 colloids-highly sensitive thermochromism and selective photocatalysis. , 2012, Chemistry.

[11]  Doo-Sik Moon,et al.  Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[12]  Polycarpos Falaras,et al.  Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes , 2012 .

[13]  Thilo Hofmann,et al.  Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. , 2011, Environmental science & technology.

[14]  T. Lim,et al.  Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: Effect of activated carbon support and aqueous anions , 2011 .

[15]  M. I. Maldonado,et al.  Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant , 2011 .

[16]  Dongkyu Cha,et al.  High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. , 2010, Angewandte Chemie.

[17]  Xin Du,et al.  Fine-tuning of silica nanosphere structure by simple regulation of the volume ratio of cosolvents. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[18]  Pradip B. Sarawade,et al.  Mesoporous titania–silica composite from sodium silicate and titanium oxychloride. Part II: one-pot co-condensation method , 2010 .

[19]  G. Lu,et al.  Cooperative self-assembly of silica-based mesostructures templated by cationic fluorocarbon/hydrocarbon mixed-surfactants , 2009 .

[20]  N. Kostova,et al.  Toluene oxidation on titanium- and iron-modified MCM-41 materials. , 2009, Journal of hazardous materials.

[21]  T. Lee,et al.  The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core-shell particles for photo-catalysis of methyl orange , 2008 .

[22]  Zhihong Li,et al.  Effects of different Ti-doping methods on the structure of pure-silica MCM-41 mesoporous materials , 2008 .

[23]  D. Zhao,et al.  Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. , 2007, Journal of the American Chemical Society.

[24]  D. Zhao,et al.  Synthesis and characterization of Ti-SBA-16 ordered mesoporous silica composite , 2007 .

[25]  P. Carrott,et al.  Structural and catalytic properties of Ti–MCM-41 synthesised at room temperature up to high Ti content , 2007 .

[26]  Valter Maurino,et al.  Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst , 2005 .

[27]  M. Ray,et al.  Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents , 2004 .

[28]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[29]  A. Mills,et al.  Novel photochemistry of leuco-Methylene Blue. , 2003, Chemical communications.

[30]  C. Mou,et al.  Extensive Void Defects in Mesoporous Aluminosilicate MCM-41 , 2000 .

[31]  G. Stucky,et al.  Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium , 2000 .

[32]  D. Zhao,et al.  Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15 , 1999 .

[33]  Xingtao Gao,et al.  Titania-silica as catalysts : molecular structural characteristics and physico-chemical properties , 1999 .

[34]  M. Bañares,et al.  Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica , 1998 .

[35]  Andreas Stein,et al.  Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: Synthesis and structural characterization , 1997 .

[36]  T. Maschmeyer,et al.  Probing the Titanium Sites in Ti−MCM41 by Diffuse Reflectance and Photoluminescence UV−Vis Spectroscopies , 1997 .

[37]  C. Langford,et al.  Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y , 1997 .

[38]  L. Kevan,et al.  Electron Spin Resonance and Diffuse Reflectance Ultraviolet−Visible Spectroscopies of Vanadium Immobilized at Surface Titanium Centers of Titanosilicate Mesoporous TiMCM-41 Molecular Sieves , 1997 .

[39]  P. Tanev,et al.  Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds , 1994, Nature.

[40]  Z. Xiong,et al.  Mesoporous TiO2 photocatalytic films on stainless steel for water decontamination , 2012 .

[41]  D. Stephan,et al.  Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres , 2007 .

[42]  Haoshen Zhou,et al.  Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization , 2004, Nature materials.

[43]  Jincai Zhao,et al.  Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst , 2003 .

[44]  Avelino Corma,et al.  Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons , 1994 .