Organometallic approach to nanoparticles synthesis and self-organization

Abstract The use of organometallic precursors allows the synthesis in mild conditions of metal nanoparticles displaying a controlled size, shape and surface environment. This method has been extended to the synthesis of bimetallic magnetic nanoparticles of controlled anisotropy and of semi-conducting oxides. We have furthermore demonstrated recently the ability of these particles to change their size or shape according to the properties of the surface ligands present. This review will focus on the organometallic approach developed in Toulouse towards the synthesis of the particles and the demonstration of the presence and role of the different ligands in the chemistry of the particles. In a second step, we describe the role of Coordination Chemistry to orientate the growth of the particles to control their monodispersity and their shape (spheres, rods, cubes, wires). A special point will be devoted to the self-organization of the particles and to the formation of 3D super-lattices of nanoparticles, a true crystallization process. Finally, some applications in physics and microelectronics will be described. To cite this article: B. Chaudret, C. R. Physique 6 (2005).

[1]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[2]  L. Thomas,et al.  Surface effects on the magnetic properties of ultrafine cobalt particles , 1998 .

[3]  L. Lescouzères,et al.  A Novel Mechanism for the Synthesis of Tin /Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors , 1999 .

[4]  F. Senocq,et al.  Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. , 2000, Chemistry.

[5]  A. Alivisatos,et al.  Synthesis of hcp-Co Nanodisks. , 2002, Journal of the American Chemical Society.

[6]  M. Casanove,et al.  A New Synthetic Method toward Bimetallic Ruthenium Platinum Nanoparticles; Composition Induced Structural Changes , 1999 .

[7]  M. Casanove,et al.  Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents. , 1999, Angewandte Chemie.

[8]  M. Casanove,et al.  Synthesis and Magnetism of CoxRh1-x and CoxRu1-x Nanoparticles , 2003 .

[9]  M. Casanove,et al.  Spontaneous formation of ordered 3D superlattices of nanocrystals from polydisperse colloidal solutions. , 2003, Angewandte Chemie.

[10]  W. D. de Heer,et al.  Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters , 1994, Science.

[11]  S. Behal,et al.  Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide , 1992 .

[12]  M. Casanove,et al.  Synthesis and Isolation of Cuboctahedral and Icosahedral Platinum Nanoparticles. Ligand-Dependent Structures , 1996 .

[13]  E. Snoeck,et al.  Quantitative magnetization measurements on nanometer ferromagnetic cobalt wires using electron holography , 2003 .

[14]  M. Casanove,et al.  Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures. , 2004, Faraday discussions.

[15]  M. Casanove,et al.  Selective synthesis of novel in and in3 sn nanowires by an organometallic route at room temperature. , 2001, Angewandte Chemie.

[16]  M. Bawendi,et al.  A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. , 1999, Angewandte Chemie.

[17]  M. Casanove,et al.  Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers - From a polytetrahedral arrangement to the hexagonal structure , 2000 .

[18]  Bruno Chaudret,et al.  Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles , 2003 .

[19]  K. Philippot,et al.  Novel super-structures resulting from the coordination of chiral oxazolines on platinum nanoparticles , 2003 .

[20]  M. Kahn,et al.  Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape. , 2003, Angewandte Chemie.

[21]  André Maisonnat,et al.  Nanosized tin oxide sensitive layer on a silicon platform for domestic gas applications , 2001 .

[22]  M. Casanove,et al.  Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. , 2001, Journal of the American Chemical Society.

[23]  B. Chaudret,et al.  Chemistry of bis(dihydrogen) ruthenium complexes and of their derivatives , 1998 .

[24]  Bruno Chaudret,et al.  Surface Chemistry on Colloidal Metals. Reversible Adsorbate-Induced Surface Composition Changes in Colloidal Palladium-Copper Alloys , 1995 .

[25]  K. Philippot,et al.  Platinum colloids stabilized by bifunctional ligands : self-organization and connection to gold , 2001 .

[26]  K. Philippot,et al.  A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. , 2004, Journal of the American Chemical Society.

[27]  O. Acher,et al.  MONODISPERSE FERROMAGNETIC PARTICLES FOR MICROWAVE APPLICATIONS , 1998 .

[28]  L. Motte,et al.  Mesoscopic Structures of Nanocrystals: Collective Magnetic Properties Due to the Alignment of Nanocrystals , 2004 .

[29]  E. Snoeck,et al.  Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor , 1996 .

[30]  M. Casanove,et al.  Synthesis and Magnetic Properties of Nickel Nanorods , 2001 .

[31]  E. Lacaze,et al.  Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies , 2003 .

[32]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[33]  P. Fejes,et al.  Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe3)2]2 , 2004, Science.

[34]  M. Casanove,et al.  Chemisorption on nickel nanoparticles of various shapes: Influence on magnetism , 2003 .

[35]  Louise Dupiery,et al.  Système des connaissances chimiques, et de leurs applications aux phénomènes de la nature et de l'art / , 1802 .

[36]  M. Casanove,et al.  Size and composition effects in polymer-protected ultrafine bimetallic Pt x Ru 1 − x ( 0 x 1 ) particles , 2001 .

[37]  André Maisonnat,et al.  Synthesis and Self-Assembly of Monodisperse Indium Nanoparticles Prepared from the Organometallic Precursor [In(η5 -C5 H5 )]. , 2001, Angewandte Chemie.

[38]  B. Chaudret,et al.  Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives , 1993 .

[39]  M. Casanove,et al.  Magnetic enhancement in nanoscale CoRh particles. , 2002, Physical review letters.

[40]  M. Pileni The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals , 2003, Nature materials.

[41]  G. Schmid,et al.  Current and future applications of nanoclusters , 2010 .

[42]  K. Philippot,et al.  Organometallic Synthesis of Size‐Controlled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols , 2003 .

[43]  K. Philippot,et al.  Indium and indium-oxide nanoparticle or nanorod formation within functionalised ordered mesoporous silica , 2003 .

[44]  André Maisonnat,et al.  Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing , 2003 .

[45]  M. Casanove,et al.  Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies , 1998 .

[46]  K. Philippot,et al.  In situ formation of gold nanoparticles within thiol functionalized HMS-C16 and SBA-15 type materials via an organometallic two-step approach , 2003 .

[47]  M. Casanove,et al.  Shape Control of Thermodynamically Stable Cobalt Nanorods through Organometallic Chemistry , 2002 .

[48]  P. Zurcher,et al.  Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. , 2003, Angewandte Chemie.