Early Detection of Change by Applying Scale-Space Methodology to Hyperspectral Images

[1]  F. Godtliebsen,et al.  A novel scale-space approach for multinormality testing and the k-sample problem in the high dimension low sample size scenario , 2019, PloS one.

[2]  Fred Godtliebsen,et al.  A Scale‐space Approach for Detecting Non‐stationarities in Time Series , 2007 .

[3]  M. A. Fahiem,et al.  An Ensemble of Classifiers based Approach for Prediction of Alzheimer's Disease using fMRI Images based on Fusion of Volumetric, Textural and Hemodynamic Features , 2018 .

[4]  Lasse Holmström,et al.  Statistical Scale Space Methods , 2017 .

[5]  Guolan Lu,et al.  Medical hyperspectral imaging: a review , 2014, Journal of biomedical optics.

[6]  James Stephen Marron,et al.  Advanced Distribution Theory for SiZer , 2006 .

[7]  Lasse Holmström,et al.  Bayesian Scale Space Analysis of Differences in Images , 2012, Technometrics.

[8]  Nicolas Vayatis,et al.  A review of change point detection methods , 2018, ArXiv.

[9]  Timo Mantere,et al.  A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety , 2013 .

[10]  Fred Godtliebsen,et al.  Reinforcement learning application in diabetes blood glucose control: A systematic review , 2020, Artif. Intell. Medicine.

[11]  J. Anitha,et al.  Change detection techniques for remote sensing applications: a survey , 2019, Earth Science Informatics.

[12]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[13]  W. R. Windham,et al.  CALIBRATION OF A PUSHBROOM HYPERSPECTRAL IMAGING SYSTEM FOR AGRICULTURAL INSPECTION , 2003 .

[14]  Haipeng Shen,et al.  A survey of high dimension low sample size asymptotics , 2018, Australian & New Zealand journal of statistics.