A Joint Regression Variable and Autoregressive Order Selection Criterion

In linear regression models with autocorrelated errors, we apply the residual likelihood approach to obtain a residual information criterion (RIC), which can jointly select regression variables and autoregressive orders. We show that RIC is a consistent criterion. In addition, our simulation studies indicate that it outperforms heuristic selection criteria - the Akaike information criterion and the Bayesian information criterion - when the signal-to-noise ratio is not weak. Copyright 2004 Blackwell Publishing Ltd.

[1]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[2]  Andrew Harvey,et al.  The econometric analysis of time series , 1991 .

[3]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[4]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[5]  Ruey S. Tsay Regression Models with Time Series Errors , 1984 .

[6]  Douglas J. Miller,et al.  Maximum entropy econometrics: robust estimation with limited data , 1996 .

[7]  ByoungSeon Choi,et al.  Arma Model Identification , 1992 .

[8]  D. Cochrane,et al.  Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms , 1949 .

[9]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[10]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[11]  W. D. Ray,et al.  The Econometric Analysis of Time Series. , 1981 .

[12]  G. Box,et al.  The likelihood function of stationary autoregressive-moving average models , 1979 .

[13]  C. Gouriéroux ARCH Models and Financial Applications , 1997 .

[14]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[15]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[16]  Gregory C. Reinsel,et al.  Bias Reduction of Autoregressive Estimates in Time Series Regression Model through Restricted Maximum Likelihood , 2000 .

[17]  G Tunnicliffe-Wilson On the Use of Marginal Likelihood in Time Series Model Estimation. , 1983 .

[18]  R. Anderson,et al.  The Problem of Autocorrelation in Regression Analysis , 1954 .

[19]  J. Galbraith,et al.  Estimation of a linear regression model with stationary ARMA(p, q) errors , 1991 .

[20]  Richard A. Davis,et al.  Time Series: Theory and Methods (2Nd Edn) , 1993 .

[21]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[22]  Chih-Ling Tsai,et al.  Regression model selection—a residual likelihood approach , 2002 .

[23]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[24]  A. Verbyla,et al.  Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics , 1993 .

[25]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[26]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[27]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.