Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma

[1]  C. Chinopoulos,et al.  Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis , 2018, ASN neuro.

[2]  K. Lemberg,et al.  We're Not “DON” Yet: Optimal Dosing and Prodrug Delivery of 6-Diazo-5-oxo-L-norleucine , 2018, Molecular Cancer Therapeutics.

[3]  C. Chinopoulos,et al.  Mycoplasma infection and hypoxia initiate succinate accumulation and release in the VM-M3 cancer cells. , 2018, Biochimica et biophysica acta. Bioenergetics.

[4]  John H. Sampson,et al.  Recurrent Glioblastoma Treated with Recombinant Poliovirus , 2018, The New England journal of medicine.

[5]  A. Schulze,et al.  Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation , 2018, Cancer & Metabolism.

[6]  A. Hjelmeland,et al.  The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. , 2018, Biochimica et biophysica acta. Reviews on cancer.

[7]  T. Seyfried,et al.  Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up , 2018, Front. Nutr..

[8]  Howard T. Chang,et al.  Investigating the Ketogenic Diet As Treatment for Primary Aggressive Brain Cancer: Challenges and Lessons Learned , 2018, Front. Nutr..

[9]  S. Griffey,et al.  A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. , 2017, Cell metabolism.

[10]  R. Teusan,et al.  Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity , 2017, Clinical Cancer Research.

[11]  Gerald C. Chu,et al.  Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism , 2017, Nature Communications.

[12]  P. Stattin,et al.  Associations between prediagnostic blood glucose levels, diabetes, and glioma , 2017, Scientific Reports.

[13]  Hyeyoung Kim,et al.  The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases , 2017, International journal of molecular sciences.

[14]  T. Seyfried,et al.  Ultrastructural characterization of the Mitochondria-associated membranes abnormalities in human astrocytomas: Functional and therapeutics implications , 2017, Ultrastructural pathology.

[15]  J. Dietrich,et al.  Role of ketogenic metabolic therapy in malignant glioma: A systematic review. , 2017, Critical reviews in oncology/hematology.

[16]  T. Seyfried,et al.  Press-pulse: a novel therapeutic strategy for the metabolic management of cancer , 2017, Nutrition & Metabolism.

[17]  R. Xu,et al.  MicroRNA-153 regulates glutamine metabolism in glioblastoma through targeting glutaminase , 2017, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.

[18]  Karen H. Vousden,et al.  Serine and one-carbon metabolism in cancer , 2016, Nature Reviews Cancer.

[19]  Eytan Ruppin,et al.  Glutamine Synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma , 2015, Nature Cell Biology.

[20]  Chen-feng Qi,et al.  Targeting glutamine metabolism rescues mice from late-stage cerebral malaria , 2015, Proceedings of the National Academy of Sciences.

[21]  A. Dueñas-González,et al.  Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy , 2015, BioMed research international.

[22]  T. Seyfried,et al.  The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer , 2015, Nutrition & Metabolism.

[23]  T. Seyfried,et al.  Metabolic therapy: a new paradigm for managing malignant brain cancer. , 2015, Cancer letters.

[24]  S. Galavotti,et al.  Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells , 2015, Proceedings of the National Academy of Sciences.

[25]  R. Deberardinis,et al.  Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases , 2014, Cell.

[26]  T. Seyfried,et al.  Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice , 2014, Nutrition & Metabolism.

[27]  T. Le Bihan,et al.  Interactions among mitochondrial proteins altered in glioblastoma , 2014, Journal of Neuro-Oncology.

[28]  S. Weis,et al.  Alterations of oxidative phosphorylation complexes in astrocytomas , 2014, Glia.

[29]  P. Dráber,et al.  Mitochondrial dysfunction in gliomas. , 2013, Seminars in pediatric neurology.

[30]  Thomas M. Wasylenko,et al.  Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells , 2013, Nature Communications.

[31]  M. Karsy,et al.  Established and emerging variants of glioblastoma multiforme: review of morphological and molecular features. , 2012, Folia neuropathologica.

[32]  M. Hall,et al.  Glutaminolysis feeds mTORC1 , 2012, Cell cycle.

[33]  E. Gottlieb,et al.  Glutaminolysis activates Rag-mTORC1 signaling. , 2012, Molecular cell.

[34]  R. Deberardinis,et al.  Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. , 2012, Cell metabolism.

[35]  I. Germano,et al.  Stemness of the CT-2A Immunocompetent Mouse Brain Tumor Model: Characterization In Vitro , 2012, Journal of Cancer.

[36]  T. Seyfried,et al.  Dietary Restriction Promotes Vessel Maturation in a Mouse Astrocytoma , 2011, Journal of oncology.

[37]  T. Seyfried,et al.  Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? , 2011, ASN neuro.

[38]  E. Hattingen,et al.  Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy , 2011, BMC Cancer.

[39]  J. Grande,et al.  Effects of Intermittent and Chronic Calorie Restriction on Mammalian Target of Rapamycin (mTOR) and IGF-I Signaling Pathways in Mammary Fat Pad Tissues and Mammary Tumors , 2011, Nutrition and Cancer.

[40]  T. Seyfried,et al.  Influence of Caloric Restriction on Constitutive Expression of NF-κB in an Experimental Mouse Astrocytoma , 2011, PloS one.

[41]  T. Seyfried,et al.  Glutamine targeting inhibits systemic metastasis in the VM‐M3 murine tumor model , 2010, International journal of cancer.

[42]  T. Seyfried,et al.  Does the existing standard of care increase glioblastoma energy metabolism? , 2010, The Lancet. Oncology.

[43]  T. Seyfried,et al.  Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse , 2010, ASN neuro.

[44]  R. Bronson,et al.  Restricted ketogenic diet enhances the therapeutic action of N‐butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice , 2010, Journal of neurochemistry.

[45]  T. Seyfried,et al.  A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion , 2010, Journal of Neuro-Oncology.

[46]  R. Deberardinis,et al.  Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. , 2009, Cancer research.

[47]  T. Seyfried,et al.  Akt-Dependent Proapoptotic Effects of Dietary Restriction on Late-Stage Management of a Phosphatase and Tensin Homologue/Tuberous Sclerosis Complex 2–Deficient Mouse Astrocytoma , 2008, Clinical Cancer Research.

[48]  T. Seyfried,et al.  Metastatic cancer cells with macrophage properties: Evidence from a new murine tumor model , 2008, International journal of cancer.

[49]  G. Arismendi-Morillo,et al.  Biological : Full-length Ultrastructural mitochondrial pathology in human astrocytic tumors : potentials implications pro-therapeutics strategies , 2008 .

[50]  J. Rho,et al.  Ketone bodies are protective against oxidative stress in neocortical neurons , 2007, Journal of neurochemistry.

[51]  M. Kiebish,et al.  The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer , 2007, Nutrition & metabolism.

[52]  T. Seyfried,et al.  Targeting energy metabolism in brain cancer: review and hypothesis , 2005, Nutrition & metabolism.

[53]  Robert L. DeLaPaz,et al.  Glucose metabolism in human gliomas: Correspondence ofin situ andin vitro metabolic rates and altered energy metabolism , 1986, Metabolic Brain Disease.

[54]  D. Farkas,et al.  Isolation of cancer stem cells from adult glioblastoma multiforme , 2004, Oncogene.

[55]  T. Seyfried,et al.  Antiangiogenic and Proapoptotic Effects of Dietary Restriction on Experimental Mouse and Human Brain Tumors , 2004, Clinical Cancer Research.

[56]  R. Veech The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. , 2004, Prostaglandins, leukotrienes, and essential fatty acids.

[57]  T. Seyfried,et al.  Role of glucose and ketone bodies in the metabolic control of experimental brain cancer , 2003, British Journal of Cancer.

[58]  R. Veech,et al.  Ketoacids? Good medicine? , 2003, Transactions of the American Clinical and Climatological Association.

[59]  M. Medina,et al.  Glutamine and cancer. , 2001, The Journal of nutrition.

[60]  P. Newsholme,et al.  Glutamine Metabolism: Nutritional and Clinical Significance Why Is L-Glutamine Metabolism Important to Cells of the Immune System in Health, Postinjury, Surgery or Infection? , 2001 .

[61]  M. Medina,et al.  Glutamine, as a precursor of glutathione, and oxidative stress. , 1999, Molecular genetics and metabolism.

[62]  L. Nebeling,et al.  Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. , 1995, Journal of the American College of Nutrition.

[63]  W W Souba,et al.  Glutamine and Cancer , 1993, Annals of surgery.

[64]  T. Seyfried,et al.  Ganglioside distribution in murine neural tumors. , 1992, Molecular and chemical neuropathology.

[65]  M. Medina,et al.  Glutaminolysis and glycolysis interactions in proliferant cells. , 1990, The International journal of biochemistry.

[66]  T Jones,et al.  In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas , 1983, Annals of neurology.

[67]  N. Allen,et al.  THE HEXOSE MONOPHOSPHATE PATHWAY IN ETHYLNITROSOUREA INDUCED TUMORS OF THE NERVOUS SYSTEM , 1978, Journal of neurochemistry.

[68]  T. Oda,et al.  Molecular basis of structure and function of the microvillus membrane of intestinal epithelial cells. , 1969, Acta medicinae Okayama.

[69]  A. Tannenbaum The Genesis and Growth of Tumors. II. Effects of Caloric Restriction per se , 1942 .