Mobility-based Time References for Wireless Sensor Networks

Wireless Sensor Networks require small low-cost radios to enable communication among its nodes. Since those radios must be fully integrated to reduce cost and size, integration is required also for their on-board time references, which are needed to achieve synchronization with the other nodes. To deal with the lower accuracy of integrated references with respect to standard quartz-crystal references, this thesis proposes the use of a duty-cycled wake-up radio and an impulse-radio modulation scheme to relax the allowed inaccuracy up to 1%. After a review of the fully integrated references with such level of inaccuracy and a power consumption low enough to be compliant with typical Wireless-Sensor-Networks energy sources, an oscillator referenced to the electron mobility in a MOS transistor is chosen as a viable candidate. To show that such references can achieve an inaccuracy of 1%, sources of errors for such oscillators have been analyzed and minimized. Prototypes built in a 65-nm CMOS process and in a 0.16-um CMOS process demonstrate proper operation over a wide temperature range while drawing less than 50 uW from a 1.2-V supply. Furthermore, to compensate the temperature dependence of the mobility, which affects the oscillator output frequency, a temperature compensation scheme has been devised. The compensation is based on a low-power low-voltage 65-nm CMOS temperature sensor with an inaccuracy of 0.2 °C (3 sigma) over the military temperature range. Finally, it is shown that the temperature-compensated mobility-based time reference can achieve the performance required by Wireless Sensor Nodes.

[1]  Y. Taur,et al.  Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's , 1997, IEEE Electron Device Letters.

[2]  R. Dutton,et al.  Minimum achievable phase noise of RC oscillators , 2005, IEEE Journal of Solid-State Circuits.

[3]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[4]  Kofi A. A. Makinwa,et al.  A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°c (3s) from −55°c to 125°c , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[5]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[6]  F. Ayazi,et al.  Process and temperature compensation in a 7-MHz CMOS clock oscillator , 2006, IEEE Journal of Solid-State Circuits.

[7]  Kay Römer,et al.  The design space of wireless sensor networks , 2004, IEEE Wireless Communications.

[8]  R. Sarpeshkar,et al.  A 10-nW 12-bit accurate analog storage cell with 10-aA leakage , 2004, IEEE Journal of Solid-State Circuits.

[9]  W. Weber,et al.  Disappearing electronics and the return of the physical world , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[10]  B. El-Kareh,et al.  Design of precision capacitors for analog applications , 1992, 1992 Proceedings 42nd Electronic Components & Technology Conference.

[11]  Jan M. Rabaey,et al.  A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[12]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[13]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[14]  Seulki Lee,et al.  A 5.2mW self-configured wearable body sensor network controller and a 12µW 54.9% efficiency wirelessly powered sensor for continuous health monitoring system , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  A. M. Thompson The cylindrical cross-capacitor as a calculable standard , 1959 .

[16]  J. Jespersen,et al.  From Sundials to Atomic Clocks: Understanding Time and Frequency , 1977 .

[17]  Michael S. McCorquodale,et al.  A 25-MHz Self-Referenced Solid-State Frequency Source Suitable for XO-Replacement , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  P. Andricciola,et al.  The Temperature Dependence of Mismatch in Deep-Submicrometer Bulk MOSFETs , 2009, IEEE Electron Device Letters.

[19]  Kofi A. A. Makinwa Smart temperature sensors in standard CMOS , 2010 .

[20]  T. Skotnicki,et al.  Refinement of the Subthreshold Slope Modeling for Advanced Bulk CMOS Devices , 2007, IEEE Transactions on Electron Devices.

[21]  R. Groves,et al.  Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology , 1997, IEEE J. Solid State Circuits.

[22]  Yannis Tsividis,et al.  Integrated continuous-time filter design - an overview , 1994, IEEE J. Solid State Circuits.

[23]  Soraya Ghiasi,et al.  System power management support in the IBM POWER6 microprocessor , 2007, IBM J. Res. Dev..

[24]  Michiel Steyaert,et al.  A 66 $\mu$ W 86 ppm$/^{\circ}$ C Fully-Integrated 6 MHz Wienbridge Oscillator With a 172 dB Phase Noise FOM , 2009, IEEE Journal of Solid-State Circuits.

[25]  K. Halonen,et al.  A 3 /spl mu/W, 2 MHz CMOS frequency reference for capacitive sensor applications , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[26]  Gerard C. M. Meijer,et al.  A three-terminal intergrated temperature transducer with microcomputer interfacing , 1989 .

[27]  Michael S. McCorquodale,et al.  A Monolithic and Self-Referenced RF LC Clock Generator Compliant With USB 2.0 , 2007, IEEE Journal of Solid-State Circuits.

[28]  M. Vertregt,et al.  Test structures for investigation of metal coverage effects on MOSFET matching , 1997, 1997 IEEE International Conference on Microelectronic Test Structures Proceedings.

[29]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[30]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[31]  C. Nguyen,et al.  MEMS technology for timing and frequency control , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[32]  K. Nose,et al.  A 1.1V 35μm × 35μm thermal sensor with supply voltage sensitivity of 2°C/10%-supply for thermal management on the SX-9 supercomputer , 2008, 2008 IEEE Symposium on VLSI Circuits.

[33]  MengChu Zhou,et al.  Technologies toward thermal comfort-based and energy-efficient HVAC systems: A review , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[34]  J.M. Conrad,et al.  A survey of energy harvesting sources for embedded systems , 2008, IEEE SoutheastCon 2008.

[35]  C. Enz,et al.  Ultra low-power radio design for wireless sensor networks , 2005, 2005 IEEE International Wkshp on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Comm & Wireless Sensor Networks.

[36]  K.A.A. Makinwa,et al.  Low-Power Operation of a Precision CMOS Temperature Sensor based on Substrate PNPs , 2007, 2007 IEEE Sensors.

[37]  N. Ueda,et al.  Evaluation of Packaging-Induced Performance Change for Small-Scale Analog IC , 2009, IEEE Transactions on Semiconductor Manufacturing.

[38]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[39]  Wen-Chin Lee,et al.  The Effects of Mechanical Uniaxial Stress on Junction Leakage in Nanoscale CMOSFETs , 2008, IEEE Transactions on Electron Devices.

[40]  Tahir Ghani,et al.  Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors , 2000, 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104).

[41]  Teresa H. Y. Meng,et al.  A mm-sized implantable power receiver with adaptive link compensation , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[42]  Kofi A. A. Makinwa,et al.  Impulse based scheme for crystal-less ULP radios , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[43]  R. Gregor,et al.  On the relationship between topography and transistor matching in an analog CMOS technology , 1992 .

[44]  H. Ali Stress-induced parametric shift in plastic packaged devices , 1997 .

[45]  Akinori Matsumoto,et al.  An On-Chip CMOS Relaxation Oscillator With Voltage Averaging Feedback , 2010, IEEE Journal of Solid-State Circuits.

[46]  Koen Langendoen,et al.  An adaptive energy-efficient MAC protocol for wireless sensor networks , 2003, SenSys '03.

[47]  Greg Taylor,et al.  Temperature Sensor Design in a High Volume Manufacturing 65nm CMOS Digital Process , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[48]  Michiel Steyaert,et al.  Erratum to "A 66 µW 86 ppm°C Fully-Integrated 6 MHz Wienbridge Oscillator With a 172 dB Phase Noise FOM" [Jul 09 1990-2001] , 2009, IEEE J. Solid State Circuits.

[49]  R. A. Blauschild An integrated time reference , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[50]  R. Courant,et al.  Introduction to Calculus and Analysis , 1991 .

[51]  K.S.J. Pister,et al.  Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply , 2006, IEEE Journal of Solid-State Circuits.

[52]  K. Mayaram,et al.  Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks , 2008, IEEE Journal of Solid-State Circuits.

[53]  Habib F. Rashvand,et al.  Ubiquitous wireless telemedicine , 2008, IET Commun..

[54]  Johan H. Huijsing,et al.  Precision Temperature Sensors in CMOS Technology , 2006 .

[55]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[56]  Poki Chen,et al.  A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range , 2010, IEEE Journal of Solid-State Circuits.

[57]  Kofi A. A. Makinwa,et al.  A 1.2V 10µW NPN-based temperature sensor in 65nm CMOS with an inaccuracy of ±0.2°C (3s) from −70°C to 125°C , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[58]  D. E. Burk,et al.  MOSFET electron inversion layer mobilities-a physically based semi-empirical model for a wide temperature range , 1989 .

[59]  S. Roundy,et al.  Marvelous MEMS , 2006, IEEE Circuits and Devices Magazine.

[60]  Thomas H. Lee It's about Time: A Brief Chronology of Chronometry , 2008, IEEE Solid-State Circuits Newsletter.

[61]  K. Makinwa,et al.  A Low-Voltage Mobility-Based Frequency Reference for Crystal-Less ULP Radios , 2009, IEEE Journal of Solid-State Circuits.

[62]  Sahra Sedigh Sarvestani,et al.  Structural Health Monitoring of Bridges Using Wireless Sensor Networks , 2010, IEEE Instrumentation & Measurement Magazine.

[63]  B. Nauta,et al.  Analog circuits in ultra-deep-submicron CMOS , 2005, IEEE Journal of Solid-State Circuits.

[64]  Kofi A. A. Makinwa,et al.  A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from -40°C to 125°C , 2010, ISSCC.

[65]  Michael S. McCorquodale,et al.  A 0.5-to-480MHz Self-Referenced CMOS Clock Generator with 90ppm Total Frequency Error and Spread-Spectrum Capability , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[66]  Y.W. Li,et al.  A 1.05 V 1.6 mW, 0.45 $^{\circ}$C 3 $\sigma$ Resolution $\Sigma\Delta$ Based Temperature Sensor With Parasitic Resistance Compensation in 32 nm Digital CMOS Process , 2009, IEEE Journal of Solid-State Circuits.

[67]  G.C.M. Meijer,et al.  The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance , 2001, IEEE Sensors Journal.

[68]  J. McCreary Matching properties, and voltage and temperature dependence of MOS capacitors , 1981 .

[69]  Kofi A. A. Makinwa,et al.  A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from −40°C to 125°C , 2011, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[70]  V. E. Bottom A History of the Quartz Crystal Industry in the USA , 1981 .

[71]  W. Lane,et al.  The design of thin-film polysilicon resistors for analog IC applications , 1989 .

[72]  D. Lampard A new theorem in electrostatics with applications to calculable standards of capacitance , 1957 .

[73]  François Krummenacher,et al.  Silicon Resonator Based 3.2 $\mu$W Real Time Clock With $\pm$10 ppm Frequency Accuracy , 2010, IEEE Journal of Solid-State Circuits.

[74]  Kofi A. A. Makinwa,et al.  Effects of packaging and process spread on a mobility-based frequency reference in 0.16-μm CMOS , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[75]  K.A.A. Makinwa,et al.  A temperature-to-digital converter based on an optimized electrothermal filter , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[76]  Seonghwan Cho,et al.  A 10MHz 80μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS , 2009, 2009 Symposium on VLSI Circuits.

[77]  John A. McNeill,et al.  Jitter in oscillators with 1/f noise sources , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[78]  Gerard C. M. Meijer Thermal sensors based on transistors , 1986 .

[79]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[80]  Kofi A. A. Makinwa,et al.  A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1% from −55°C to 125°C , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[81]  Kofi A. A. Makinwa,et al.  A BiCMOS Operational Amplifier Achieving 0.33μV°C Offset Drift using Room-Temperature Trimming , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[82]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[83]  Kofi A. A. Makinwa,et al.  A 65-nm CMOS Temperature-Compensated Mobility-Based Frequency Reference for Wireless Sensor Networks , 2010, IEEE Journal of Solid-State Circuits.

[84]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[85]  Woodward Yang,et al.  A low-power 256-Mb SDRAM with an on-chip thermometer and biased reference line sensing scheme , 2003 .

[86]  N. Fayyaz,et al.  A silicon die as a frequency source , 2010, 2010 IEEE International Frequency Control Symposium.

[87]  J. F. Duque-Carrillo,et al.  Am improved tail current source for low voltage applications , 1997 .

[88]  James Jespersen,et al.  From sundials to atomic clocks , 1982 .

[89]  Kofi A. A. Makinwa,et al.  A 1.2-V 10-μ W NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2°C (3 Sigma ) From - 70°C to 125°C , 2010, IEEE J. Solid State Circuits.

[90]  P.R. Kinget Device mismatch and tradeoffs in the design of analog circuits , 2005, IEEE Journal of Solid-State Circuits.

[91]  B. Otis,et al.  PicoRadios for wireless sensor networks: the next challenge in ultra-low power design , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[92]  Kofi A. A. Makinwa,et al.  A CMOS temperature sensor with an energy-efficient zoom ADC and an Inaccuracy of ±0.25°C (3s) from −40°C to 125°C , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[93]  JAMAL N. AL-KARAKI,et al.  Routing techniques in wireless sensor networks: a survey , 2004, IEEE Wireless Communications.

[94]  Yiannos Manoli,et al.  An Integrated Power Supply System for Low Power 3.3 V Electronics Using On-Chip Polymer Electrolyte Membrane (PEM) Fuel Cells , 2009, IEEE Journal of Solid-State Circuits.

[95]  Julien Penders,et al.  Potential and challenges of body area networks for personal health , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[96]  H. Oguey,et al.  Smart temperature sensor in CMOS technology , 1990 .

[97]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[98]  Paul K. Wright,et al.  Powering Ambient Intelligent Networks , 2005, Ambient Intelligence.

[99]  Willy Sansen,et al.  A CMOS temperature-compensated current reference , 1988 .

[100]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[101]  Johan H. Huijsing,et al.  Micropower CMOS temperature sensor with digital output , 1996, IEEE J. Solid State Circuits.

[102]  R. Castello,et al.  A metal-oxide-semiconductor varactor , 1999, IEEE Electron Device Letters.

[103]  Ii Leon W. Couch Digital and analog communication systems , 1983 .

[104]  Jan M. Rabaey,et al.  Ultra-Low Power Integrated Wireless Nodes for Sensor and Actuator Networks , 2005, Ambient Intelligence.

[105]  Geert Van der Plas,et al.  Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[106]  Kaushik Roy,et al.  Gate leakage reduction for scaled devices using transistor stacking , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[107]  Janusz Groszkowski Frequency of Self-Oscillations , 2013 .

[108]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[109]  A. Sugavanam,et al.  On-chip antennas in silicon ICs and their application , 2005, IEEE Transactions on Electron Devices.

[110]  Kofi A. A. Makinwa,et al.  A scaled thermal-diffusivity-based frequency reference in 0.16μm CMOS , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[111]  A. Hastings The Art of Analog Layout , 2000 .

[112]  Christian C. Enz,et al.  WiseNET: an ultralow-power wireless sensor network solution , 2004, Computer.

[113]  G.C.M. Meijer,et al.  Temperature sensors and voltage references implemented in CMOS technology , 2001, IEEE Sensors Journal.

[114]  Gabriel A. Rincon-Mora,et al.  Voltage shift in plastic-packaged bandgap references , 2002 .

[115]  Sander L.J. Gierkink,et al.  Control linearity and jitter of relaxation oscillators , 1999 .

[116]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[117]  Kofi A. A. Makinwa,et al.  A Thermal-Diffusivity-Based Frequency Reference in Standard CMOS With an Absolute Inaccuracy of ±0.1% From - 55°C to 125°C , 2010, IEEE J. Solid State Circuits.

[118]  Guo-Wei Huang,et al.  Characterization and modeling of SOI varactors at various temperatures , 2004 .

[119]  Kofi A. A. Makinwa,et al.  A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[120]  Fred S. Lee,et al.  A Low Area, Switched-Resistor Based Fractional-N Synthesizer Applied to a MEMS-Based Programmable Oscillator , 2010, IEEE Journal of Solid-State Circuits.

[121]  Jiin-Chuan Wu,et al.  A process and temperature compensated ring oscillator , 1999, AP-ASIC'99. First IEEE Asia Pacific Conference on ASICs (Cat. No.99EX360).

[122]  Kenneth S. Szajda,et al.  A Low Noise, High Resolution Silicon Temperature Sensor , 1994, ESSCIRC '94: Twientieth European Solid-State Circuits Conference.

[123]  Kristofer S. J. Pister,et al.  SoC Issues for RF Smart Dust , 2006, Proceedings of the IEEE.

[124]  Alper Demir,et al.  Computing Timing Jitter From Phase Noise Spectra for Oscillators and Phase-Locked Loops With White and$1/f$Noise , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[125]  Alberto L. Sangiovanni-Vincentelli,et al.  The Tire as an Intelligent Sensor , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[126]  K. Halonen,et al.  A micropower 2 MHz CMOS frequency reference for capacitive sensor applications , 2005, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005..

[127]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[128]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) from −70°C to 130°C , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[129]  J. W. Sofia,et al.  Analysis of thermal transient data with synthesized dynamic models for semiconductor devices , 1994, Proceedings of the Technical Program. ELECTRO 99 (Cat. No.99CH36350).