Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters

Disconnectivity graphs are used to characterize the potential energy surfaces of Lennard-Jones clusters containing 13, 19, 31, 38, 55, and 75 atoms. This set includes members which exhibit either one or two “funnels” whose low-energy regions may be dominated by a single deep minimum or contain a number of competing structures. The graphs evolve in size due to these specific size effects and an exponential increase in the number of local minima with the number of atoms. To combat the vast number of minima we investigate the use of monotonic sequence basins as the fundamental topographical unit. Finally, we examine disconnectivity graphs for a transformed energy landscape to explain why the transformation provides a useful approach to the global optimization problem.

[1]  Janet E. Jones,et al.  On the Calculation of Certain Crystal Potential Constants, and on the Cubic Crystal of Least Potential Energy , 1925 .

[2]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[3]  J. Pancíř Calculation of the least energy path on the energy hypersurface , 1975 .

[4]  M. Hoare,et al.  Statistical mechanics and morphology of very small atomic clusters , 1976 .

[5]  Olof Echt,et al.  Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters , 1981 .

[6]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[7]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[8]  F. Stillinger,et al.  Packing Structures and Transitions in Liquids and Solids , 1984, Science.

[9]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[10]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Michael Page,et al.  On evaluating the reaction path Hamiltonian , 1988 .

[12]  F. Stillinger,et al.  Nonlinear optimization simplified by hypersurface deformation , 1988 .

[13]  J. Farges,et al.  Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms , 1989 .

[14]  R. Elber,et al.  Reaction path study of conformational transitions in flexible systems: Applications to peptides , 1990 .

[15]  J. Onuchic,et al.  Protein folding funnels: a kinetic approach to the sequence-structure relationship. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Daan Frenkel,et al.  COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .

[17]  C. J. Tsai,et al.  Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters , 1993 .

[18]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[19]  K. Re,et al.  Coexistence of multiple phases in finite systems. , 1993 .

[20]  D. Wales Locating stationary points for clusters in cartesian coordinates , 1993 .

[21]  David J. Wales,et al.  Rearrangements of 55‐atom Lennard‐Jones and (C60)55 clusters , 1994 .

[22]  Berry,et al.  Multiple phase coexistence in finite systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Jonathan P. K. Doye,et al.  An order parameter approach to coexistence in atomic clusters , 1995 .

[24]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[25]  R. Stephen Berry,et al.  Statistical interpretation of topographies and dynamics of multidimensional potentials , 1995 .

[26]  Berry,et al.  Topography and Dynamics of Multidimensional Interatomic Potential Surfaces. , 1995, Physical review letters.

[27]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[28]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[29]  Jonathan P. K. Doye,et al.  Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .

[30]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[31]  D. Wales,et al.  From Topographies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters , 1996, Science.

[32]  Howard R. Mayne,et al.  Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .

[33]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[34]  S. Gómez,et al.  Archimedean polyhedron structure yields a lower energy atomic cluster , 1996 .

[35]  Robert H. Leary,et al.  Global Optima of Lennard-Jones Clusters , 1997, J. Glob. Optim..

[36]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[37]  M. Karplus,et al.  The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .

[38]  Comment on “Relaxation of collective excitations in LJ-13 cluster” [J. Chem. Phys. 105, 3679 (1996)] , 1997 .

[39]  J. Doye,et al.  Surveying a potential energy surface by eigenvector-following , 1997 .

[40]  R S Berry,et al.  Linking topography of its potential surface with the dynamics of folding of a protein model. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Jonathan Doye,et al.  Thermodynamics of Global Optimization , 1998 .

[42]  Yaakov Levy,et al.  Effect of Conformational Constraints on the Topography of Complex Potential Energy Surfaces , 1998 .

[43]  Howard R. Mayne,et al.  A study of genetic algorithm approaches to global geometry optimization of aromatic hydrocarbon microclusters , 1998 .

[44]  Connected Network of Minima as a Model Glass: Long Time Dynamics , 1998, cond-mat/9803165.

[45]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[46]  J. Doye,et al.  Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.

[47]  Jay W. Ponder,et al.  Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization , 1998 .

[48]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[49]  Karo Michaelian A symbiotic algorithm for finding the lowest energy isomers of large clusters and molecules , 1998 .

[50]  U. Landman,et al.  Genetic Algorithms for Structural Cluster Optimization , 1998 .

[51]  F. Stillinger Exponential multiplicity of inherent structures , 1999 .

[52]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[53]  STRUCTURAL RELAXATION IN MORSE CLUSTERS : ENERGY LANDSCAPES , 1998, cond-mat/9808080.