Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters
暂无分享,去创建一个
[1] Janet E. Jones,et al. On the Calculation of Certain Crystal Potential Constants, and on the Cubic Crystal of Least Potential Energy , 1925 .
[2] A. Mackay. A dense non-crystallographic packing of equal spheres , 1962 .
[3] J. Pancíř. Calculation of the least energy path on the energy hypersurface , 1975 .
[4] M. Hoare,et al. Statistical mechanics and morphology of very small atomic clusters , 1976 .
[5] Olof Echt,et al. Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters , 1981 .
[6] W. Miller,et al. ON FINDING TRANSITION STATES , 1981 .
[7] P. Steinhardt,et al. Bond-orientational order in liquids and glasses , 1983 .
[8] F. Stillinger,et al. Packing Structures and Transitions in Liquids and Solids , 1984, Science.
[9] J. Northby. Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .
[10] H. Scheraga,et al. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[11] Michael Page,et al. On evaluating the reaction path Hamiltonian , 1988 .
[12] F. Stillinger,et al. Nonlinear optimization simplified by hypersurface deformation , 1988 .
[13] J. Farges,et al. Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms , 1989 .
[14] R. Elber,et al. Reaction path study of conformational transitions in flexible systems: Applications to peptides , 1990 .
[15] J. Onuchic,et al. Protein folding funnels: a kinetic approach to the sequence-structure relationship. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[16] Daan Frenkel,et al. COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .
[17] C. J. Tsai,et al. Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters , 1993 .
[18] David J. Wales,et al. Coexistence in small inert gas clusters , 1993 .
[19] K. Re,et al. Coexistence of multiple phases in finite systems. , 1993 .
[20] D. Wales. Locating stationary points for clusters in cartesian coordinates , 1993 .
[21] David J. Wales,et al. Rearrangements of 55‐atom Lennard‐Jones and (C60)55 clusters , 1994 .
[22] Berry,et al. Multiple phase coexistence in finite systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] Jonathan P. K. Doye,et al. An order parameter approach to coexistence in atomic clusters , 1995 .
[24] L. Piela,et al. Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .
[25] R. Stephen Berry,et al. Statistical interpretation of topographies and dynamics of multidimensional potentials , 1995 .
[26] Berry,et al. Topography and Dynamics of Multidimensional Interatomic Potential Surfaces. , 1995, Physical review letters.
[27] J. Doye,et al. The effect of the range of the potential on the structures of clusters , 1995 .
[28] J. Onuchic,et al. Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.
[29] Jonathan P. K. Doye,et al. Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .
[30] C. Angell,et al. Formation of Glasses from Liquids and Biopolymers , 1995, Science.
[31] D. Wales,et al. From Topographies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters , 1996, Science.
[32] Howard R. Mayne,et al. Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .
[33] K. Ho,et al. Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .
[34] S. Gómez,et al. Archimedean polyhedron structure yields a lower energy atomic cluster , 1996 .
[35] Robert H. Leary,et al. Global Optima of Lennard-Jones Clusters , 1997, J. Glob. Optim..
[36] J. Doye,et al. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.
[37] M. Karplus,et al. The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .
[38] Comment on “Relaxation of collective excitations in LJ-13 cluster” [J. Chem. Phys. 105, 3679 (1996)] , 1997 .
[39] J. Doye,et al. Surveying a potential energy surface by eigenvector-following , 1997 .
[40] R S Berry,et al. Linking topography of its potential surface with the dynamics of folding of a protein model. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[41] Jonathan Doye,et al. Thermodynamics of Global Optimization , 1998 .
[42] Yaakov Levy,et al. Effect of Conformational Constraints on the Topography of Complex Potential Energy Surfaces , 1998 .
[43] Howard R. Mayne,et al. A study of genetic algorithm approaches to global geometry optimization of aromatic hydrocarbon microclusters , 1998 .
[44] Connected Network of Minima as a Model Glass: Long Time Dynamics , 1998, cond-mat/9803165.
[45] J. Doye,et al. THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.
[46] J. Doye,et al. Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.
[47] Jay W. Ponder,et al. Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization , 1998 .
[48] Mark A. Miller,et al. Archetypal energy landscapes , 1998, Nature.
[49] Karo Michaelian. A symbiotic algorithm for finding the lowest energy isomers of large clusters and molecules , 1998 .
[50] U. Landman,et al. Genetic Algorithms for Structural Cluster Optimization , 1998 .
[51] F. Stillinger. Exponential multiplicity of inherent structures , 1999 .
[52] H. Scheraga,et al. Global optimization of clusters, crystals, and biomolecules. , 1999, Science.
[53] STRUCTURAL RELAXATION IN MORSE CLUSTERS : ENERGY LANDSCAPES , 1998, cond-mat/9808080.