Conforming and divergence-free Stokes elements on general triangular meshes

We present a family of conforming finite elements for the Stokes problem on general triangular meshes in two dimensions. The lowest order case consists of enriched piecewise linear polynomials for the velocity and piecewise constant polynomials for the pressure. We show that the elements satisfy the inf-sup condition and converges with order k for both the velocity and pressure. Moreover, the pressure space is exactly the divergence of the corresponding space for the velocity. Therefore the discretely divergence-free functions are divergence-free pointwise. We also show how the proposed elements are related to a class of C1 elements through the use of a discrete de Rham complex.

[1]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[2]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[3]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[4]  Jinshui Qin,et al.  Stability and approximability of the 1 0 element for Stokes equations , 2007 .

[5]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[6]  Alexander Linke,et al.  Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .

[7]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[8]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[9]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[12]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[13]  Zhang,et al.  ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .

[14]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[15]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[16]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[17]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[18]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[19]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[20]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[21]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[22]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[23]  Xuecheng Tai,et al.  A discrete de Rham complex with enhanced smoothness , 2006 .

[24]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[25]  M. Fortin,et al.  Finite Elements for the Stokes Problem , 2008 .

[26]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[27]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[29]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[30]  Shangyou Zhang,et al.  A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..

[31]  Yunqing Huang,et al.  A lowest order divergence-free finite element on rectangular grids , 2011 .

[32]  Guzmán Johnny,et al.  A family of nonconforming elements for the Brinkman problem , 2012 .

[33]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .