Conforming and divergence-free Stokes elements on general triangular meshes
暂无分享,去创建一个
[1] C. Bernardi,et al. Analysis of some finite elements for the Stokes problem , 1985 .
[2] Michel Fortin,et al. Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .
[3] M. Fortin,et al. A non‐conforming piecewise quadratic finite element on triangles , 1983 .
[4] Jinshui Qin,et al. Stability and approximability of the 1 0 element for Stokes equations , 2007 .
[5] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[6] Alexander Linke,et al. Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .
[7] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[8] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[9] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[10] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[11] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[12] Shangyou Zhang. Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .
[13] Zhang,et al. ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .
[14] Xue-Cheng Tai,et al. A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..
[15] Xiaoping,et al. UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .
[16] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[17] F. Auricchio,et al. The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .
[18] Peter Schlattmann,et al. Theory and Algorithms , 2009 .
[19] Franco Brezzi Michel Fortin,et al. Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .
[20] Douglas N. Arnold,et al. Quadratic velocity/linear pressure Stokes elements , 1992 .
[21] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[22] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[23] Xuecheng Tai,et al. A discrete de Rham complex with enhanced smoothness , 2006 .
[24] O. Zienkiewicz. The Finite Element Method In Engineering Science , 1971 .
[25] M. Fortin,et al. Finite Elements for the Stokes Problem , 2008 .
[26] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[27] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[29] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[30] Shangyou Zhang,et al. A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..
[31] Yunqing Huang,et al. A lowest order divergence-free finite element on rectangular grids , 2011 .
[32] Guzmán Johnny,et al. A family of nonconforming elements for the Brinkman problem , 2012 .
[33] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .