Enhancement of cobalt catalyst stability in Fischer-Tropsch synthesis using graphene nanosheets as catalyst support

[1]  A. Tavasoli,et al.  Cobalt supported on Graphene – A promising novel Fischer–Tropsch synthesis catalyst , 2015 .

[2]  A. Tavasoli,et al.  Enhancement of activity, selectivity and stability of CNTs-supported cobalt catalyst in Fischer–Tropsch via CNTs functionalization , 2014 .

[3]  U. Graham,et al.  Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst , 2014, Catalysis Letters.

[4]  C. H. Bartholomew,et al.  Cobalt Fischer–Tropsch Catalyst Deactivation Modeled Using Generalized Power Law Expressions , 2014, Topics in Catalysis.

[5]  H. Kung,et al.  Metal Free Graphene Based Catalysts: A Review , 2014, Topics in Catalysis.

[6]  A. Tavasoli,et al.  Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer–Tropsch synthesis activity, selectivity and stability , 2014 .

[7]  M. S. El-shall,et al.  Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes , 2014 .

[8]  G. Schatz,et al.  Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. , 2013, Journal of the American Chemical Society.

[9]  A. J. Markvoort,et al.  Chain Growth by CO Insertion in the Fischer–Tropsch Reaction , 2013 .

[10]  Peng Zhai,et al.  Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer Tropsch synthesis , 2013 .

[11]  A. Tavasoli,et al.  Comparing the deactivation behaviour of Co/CNT and Co/γ-Al2O3 nano catalysts in Fischer-Tropsch synthesis , 2012 .

[12]  M. Rønning,et al.  Fischer–Tropsch synthesis: An XAS/XRPD combined in situ study from catalyst activation to deactivation , 2012 .

[13]  Diane Hildebrandt,et al.  The effect of CO2 on a cobalt-based catalyst for low temperature Fischer–Tropsch synthesis , 2012 .

[14]  P. Serp,et al.  Graphene-based materials for catalysis , 2012 .

[15]  C. Dimitrakopoulos,et al.  Graphene : synthesis and applications , 2012 .

[16]  Chenze Qi,et al.  Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions , 2012 .

[17]  Shouheng Sun,et al.  FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[18]  Anders Holmen,et al.  Deactivation of cobalt based Fischer―Tropsch catalysts: A review , 2010 .

[19]  Nicolas Abatzoglou,et al.  Effects of Confinement in Carbon Nanotubes on the Activity, Selectivity, and Lifetime of Fischer—Tropsch Co/Carbon Nanotube Catalysts , 2010 .

[20]  A. Dalai,et al.  Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions , 2010 .

[21]  Shaojun Dong,et al.  Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. , 2010, ACS nano.

[22]  François M. Peeters,et al.  Water on graphene: Hydrophobicity and dipole moment using density functional theory , 2009 .

[23]  Ja Hun Kwak,et al.  Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction , 2009 .

[24]  A. Borgna,et al.  Density Functional Theory Study of the CO Insertion Mechanism for Fischer−Tropsch Synthesis over Co Catalysts , 2009 .

[25]  A. Datye,et al.  Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions , 2009 .

[26]  Xinhe Bao,et al.  Reactions over catalysts confined in carbon nanotubes. , 2008, Chemical communications.

[27]  Anders Holmen,et al.  Fischer–Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution , 2008 .

[28]  A. Dalai,et al.  Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts , 2008 .

[29]  Ajay K. Dalai,et al.  Fischer–Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor , 2008 .

[30]  Ahmad Tavasoli,et al.  Cobalt supported on carbon nanotubes — A promising novel Fischer–Tropsch synthesis catalyst , 2008 .

[31]  C. Rao,et al.  A study of graphenes prepared by different methods: characterization, properties and solubilization , 2008 .

[32]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[33]  Burtron H. Davis,et al.  Fischer–Tropsch synthesis: The paraffin to olefin ratio as a function of carbon number , 2005 .

[34]  A. Dalai,et al.  Fischer–Tropsch synthesis: Water effects on Co supported on narrow and wide-pore silica , 2005 .

[35]  G. Jacobs,et al.  Fischer–Tropsch synthesis: Deactivation of promoted and unpromoted cobalt–alumina catalysts , 2005 .

[36]  Yongqing Zhang,et al.  FISCHER-TROPSCH SYNTHESIS: DEACTIVATION OF NOBLE METAL PROMOTED CO/AL2O3 CATALYSTS , 2002 .

[37]  Yongqing Zhang,et al.  Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts , 2002 .

[38]  G. Huffman,et al.  Agglomeration and Phase Transition of a Nanophase Iron Oxide Catalyst , 1993 .