DEA with efficiency classification preserving conditional convexity

Abstract We propose to relax the standard convexity property used in Data Envelopment Analysis (DEA) by imposing additional qualifications for feasibility of convex combinations. We specifically focus on a condition that preserves the Koopmans efficiency classification. This yields an efficiency classification preserving conditional convexity property, which is implied by both monotonicity and convexity, but not conversely. Substituting convexity by conditional convexity, we construct various empirical DEA approximations as the minimal sets that contain all DMUs and are consistent with the imposed production assumptions. Imposing an additional disjunctive constraint to standard convex DEA formulations can enforce conditional convexity. Computation of efficiency measures relative to conditionally convex production set can be performed through Disjunctive Programming (DP).

[1]  J. Tind,et al.  Convex Input and Output Projections of Nonconvex Production Possibility Sets , 2000 .

[2]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[3]  W. Briec A Graph-Type Extension of Farrell Technical Efficiency Measure , 1997 .

[4]  P. Bauer Recent developments in the econometric estimation of frontiers , 1990 .

[5]  Jens Leth Hougaard,et al.  Efficiency Evaluations Based on Potential (Non-Proportional) Improvements , 1999 .

[6]  Léopold Simar,et al.  FDH Efficiency Scores from a Stochastic Point of View , 1997 .

[7]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[8]  Kristiaan Kerstens,et al.  Distinguishing technical and scale efficiency on non-convex and convex technologies: theoretical analysis and empirical illustrations , 1998 .

[9]  R. Shephard Cost and production functions , 1953 .

[10]  Thierry Post,et al.  A quasi-concave DEA model with an application for bank branch performance evaluation , 2001, Eur. J. Oper. Res..

[11]  Rolf Färe,et al.  On price efficiency , 1990 .

[12]  R. Färe,et al.  Intertemporal Production Frontiers: With Dynamic DEA , 1996 .

[13]  Rolf Färe,et al.  Nonparametric tests of regularity, Farrell efficiency, and goodness-of-fit☆ , 1995 .

[14]  Timo Kuosmanen,et al.  What Is the Economic Meaning of FDH? A Reply to Thrall , 2000 .

[15]  J. Doyle,et al.  Multiattribute Choice for the Lazy Decision Maker: Let the Alternatives Decide! , 1995 .

[16]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[17]  Lawrence M. Seiford,et al.  Data envelopment analysis: The evolution of the state of the art (1978–1995) , 1996 .

[18]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[19]  Peter Bogetoft,et al.  Incentive efficient production frontiers: an agency perspective on DEA , 1994 .

[20]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[21]  D. McFadden,et al.  Production Economics: A Dual Approach to Theory and Applications (I): The Theory of Production , 1978 .

[22]  Kristiaan Kerstens,et al.  Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit , 1999, Eur. J. Oper. Res..

[23]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[24]  N. Petersen Data Envelopment Analysis on a Relaxed Set of Assumptions , 1990 .

[25]  Rolf Färe,et al.  Fundamentals of production theory , 1988 .

[26]  H. Varian The Nonparametric Approach to Production Analysis , 1984 .

[27]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[28]  R. Färe,et al.  The Structure of Technical Efficiency , 1983 .

[29]  Timo Kuosmanen,et al.  Measuring economic efficiency with incomplete price information , 2003, Eur. J. Oper. Res..

[30]  Rolf Färe,et al.  The relative efficiency of Illinois electric utilities , 1983 .

[31]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[32]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[33]  D. McFadden Cost, Revenue, and Profit Functions , 1978 .

[34]  M. Rothschild,et al.  Testing the Assumptions of Production Theory: A Nonparametric Approach , 1972, Journal of Political Economy.

[35]  Peter Bogetoft,et al.  DEA on relaxed convexity assumptions , 1996 .

[36]  Kristiaan Kerstens,et al.  The choice of a technical efficiency measure on the free disposal hull reference technology: A comparison using US banking data , 1998, Eur. J. Oper. Res..

[37]  E. Mammen,et al.  On estimation of monotone and concave frontier functions , 1999 .

[38]  Thierry Post,et al.  Estimating non-convex production sets - imposing convex input sets and output sets in data envelopment analysis , 2001, Eur. J. Oper. Res..

[39]  P. Pestieau,et al.  Public Enterprise Economics.@@@The Performance of Public Enterprises: Concepts and Measurement. , 1987 .

[40]  Roger Guesnerie,et al.  Pareto Optimality in Non-Convex Economies , 1975 .

[41]  R. Färe,et al.  Congestion of Production Factors , 1980 .

[42]  Henry Tulkens,et al.  Mesurer l'efficacité: avec ou sans frontières? , 1999 .

[43]  P. W. Wilson,et al.  Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models , 1998 .

[44]  S. Afriat Efficiency Estimation of Production Function , 1972 .

[45]  Timo Kuosmanen,et al.  Nonparametric Efficiency Analysis under Price Uncertainty: A First-Order Stochastic Dominance Approach , 2002 .

[46]  Aleksei Savatyugin,et al.  The History of Economic Analysis , 2002 .

[47]  Hanif D. Sherali,et al.  Optimization with disjunctive constraints , 1980 .