The role of human factors in stereotyping behavior and perception of digital library users: a robust clustering approach

To deliver effective personalization for digital library users, it is necessary to identify which human factors are most relevant in determining the behavior and perception of these users. This paper examines three key human factors: cognitive styles, levels of expertise and gender differences, and utilizes three individual clustering techniques: k-means, hierarchical clustering and fuzzy clustering to understand user behavior and perception. Moreover, robust clustering, capable of correcting the bias of individual clustering techniques, is used to obtain a deeper understanding. The robust clustering approach produced results that highlighted the relevance of cognitive style for user behavior, i.e., cognitive style dominates and justifies each of the robust clusters created. We also found that perception was mainly determined by the level of expertise of a user. We conclude that robust clustering is an effective technique to analyze user behavior and perception.

[1]  Hiroyuki Watanabe,et al.  Application of a fuzzy discrimination analysis for diagnosis of valvular heart disease , 1994, IEEE Trans. Fuzzy Syst..

[2]  Sherry Chen,et al.  A cognitive model for non-linear learning in hypermedia programmes , 2002, Br. J. Educ. Technol..

[3]  Mun Y. Yi,et al.  Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model , 2003, Int. J. Hum. Comput. Stud..

[4]  Ian Witten,et al.  Data Mining , 2000 .

[5]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[6]  Judi Repman,et al.  The Relationship of Learning, Behavior, and Cognitive Style in Hypermedia-Based Instruction: Implications for Design of HBI , 1995, Planning Continuing Professional Development.

[7]  C. A. Moore,et al.  Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications , 1977 .

[8]  Gediminas Adomavicius,et al.  Personalization and Recommender Systems , 2008 .

[9]  Iwan G. J. H. Wopereis,et al.  Differences between novice and experienced users in searching information on the World Wide Web , 2000, J. Am. Soc. Inf. Sci..

[10]  Jeffrey Heer,et al.  WebQuilt : A Proxy-based Approach to Remote Web Usability Testing , 2001 .

[11]  Yu Yan-fang Evaluation of Information Security Management System Based on Tradeoff Analysis , 2009 .

[12]  P. Stephen,et al.  Simple Statistics for Library and Information Professionals , 1995 .

[13]  Constantine D. Spyropoulos,et al.  Exploiting learning techniques for the acquisition of user stereotypes and communities , 1999 .

[14]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[15]  Franck Tarpin-Bernard,et al.  Modeling Elementary Cognitive Abilities for Adaptive Hypermedia Presentation , 2005, User Modeling and User-Adapted Interaction.

[16]  Richard Riding,et al.  Cognitive style, gender and learning from multi-media materials in 11-year-old children , 1999, Br. J. Educ. Technol..

[17]  Xiaohui Liu,et al.  Consensus clustering and functional interpretation of gene-expression data , 2004, Genome Biology.

[18]  Ingrid Zukerman,et al.  Predicting users' requests on the WWW , 1999 .

[19]  John S. Uebersax,et al.  Diversity of decision-making models and the measurement of interrater agreement. , 1987 .

[20]  Tomás Aluja,et al.  Book review: Multiple correspondence analysis and related methods. Greenacre, M. and Blasius, J. Chapman & Hall/CRC, 2006. , 2006 .

[21]  Sergio M. Savaresi,et al.  Choosing the cluster to split in bisecting divisive clustering algorithms , 2006 .

[22]  Kyung-Sun Kim,et al.  Cognitive style and on-line database search experience as predictors of Web search performance , 2000, J. Am. Soc. Inf. Sci..

[23]  Robert C. Kohberger,et al.  Cluster Analysis (3rd ed.) , 1994 .

[24]  Anupam,et al.  Mining Web Access Logs Using Relational Competitive Fuzzy Clustering , 1999 .

[25]  Kent L. Norman,et al.  Development of an instrument measuring user satisfaction of the human-computer interface , 1988, CHI '88.

[26]  Jean-Pierre Nadal,et al.  Symbolic Data Analysis With the K-Means Algorithm for User Profiling , 1997 .

[27]  Peretz Shoval,et al.  Stereotypes in Information Filtering Systems , 1997, Inf. Process. Manag..

[28]  Brian Everitt,et al.  Cluster analysis , 1974 .

[29]  Robert D. Macredie,et al.  Cognitive styles and hypermedia navigation: Development of a learning model , 2002, J. Assoc. Inf. Sci. Technol..

[30]  Anupam Joshi,et al.  On Mining Web Access Logs , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[31]  M. Chi,et al.  Gender Differences in Patterns of Searching the Web , 2003 .

[32]  Harold Thimbleby,et al.  Interaction Modelling for Digital Libraries , 2000 .

[33]  Alfred Kobsa User Modeling and User-Adapted Interaction , 2005, User Modeling and User-Adapted Interaction.

[34]  K. Vanhoof,et al.  Clustering navigation patterns on a website using a Sequence Alignment Method , 2001 .

[35]  Douglas G. Altman,et al.  Practical statistics for medical research , 1990 .

[36]  Alfred Kobsa,et al.  Generic User Modeling Systems , 2001, User modeling and user-adapted interaction.

[37]  Sharon Lea Vansickle Tenth graders' search knowledge and use of the World Wide Web , 2000 .

[38]  Steven W. Brown,et al.  The effects and interaction of spatial visualization and domain expertise on information seeking , 2004, Comput. Hum. Behav..

[39]  Fabio Pianesi,et al.  The influence of personality factors on visitor attitudes towards adaptivity dimensions for mobile museum guides , 2006, User Modeling and User-Adapted Interaction.

[40]  Hannu Koivisto,et al.  Profiling Network Applications with Fuzzy C-Means Clustering and Self-Organizing Map , 2002, FSKD.

[41]  PatternsYongjian,et al.  Clustering of Web Users Based on Access , 1999 .

[42]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[43]  Nigel Ford,et al.  Cognitive styles and virtual environments , 2000, J. Am. Soc. Inf. Sci..

[44]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[45]  Carol Tenopir,et al.  Users' interaction with World Wide Web resources: an exploratory study using a holistic approach , 2000, Inf. Process. Manag..

[46]  Jonathan Grudin,et al.  Design and evaluation , 1995 .

[47]  Thomas P. Van Dyke,et al.  Effects of training on Internet self-efficacy and computer user attitudes , 2002, Comput. Hum. Behav..

[48]  Gary Marchionini,et al.  The People in Digital Libraries: Multifaceted Approaches to Assessing Needs and Impact , 1999 .

[49]  David Miller,et al.  Web search strategies and human individual differences: Cognitive and demographic factors, Internet attitudes, and approaches , 2005, J. Assoc. Inf. Sci. Technol..

[50]  M. Cyr,et al.  Computing Cohen’s kappa coefficients using SPSS MATRIX , 1994 .

[51]  Harm J. A. Biemans,et al.  Differences between novice and experienced users in searching information on the World Wide Web , 2000 .

[52]  Jamshid Beheshti,et al.  Design criteria for children's Web portals: The users speak out , 2002, J. Assoc. Inf. Sci. Technol..

[53]  Steven J. M. Jones,et al.  A methodology for analyzing SAGE libraries for cancer profiling , 2005, TOIS.

[54]  Enrique Frías-Martínez,et al.  Automatic cognitive style identification of digital library users for personalization , 2007, J. Assoc. Inf. Sci. Technol..

[55]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[56]  Ricard E. Downing Individual differences in information seeking : the effects and interaction of spatial visualization and domain expertise , 2003 .

[57]  Robert D. Macredie,et al.  Cognitive Modeling of Student Learning in Web-Based Instructional Programs , 2004, Int. J. Hum. Comput. Interact..

[58]  Stefano Lodi Data clustering I , 2009 .

[59]  Robert D. Macredie,et al.  Hypermedia learning and prior knowledge: domain expertise vs. system expertise , 2005, J. Comput. Assist. Learn..

[60]  Yoon Ho Cho,et al.  A personalized recommender system based on web usage mining and decision tree induction , 2002, Expert Syst. Appl..

[61]  James R. Lewis,et al.  IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use , 1995, Int. J. Hum. Comput. Interact..

[62]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[63]  Hua Liu,et al.  Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments , 2005, BMC Bioinformatics.

[64]  Nancy A. Vanhouse,et al.  Digital Library Use: Social Practice in Design and Evaluation , 2003 .

[65]  Sergio M. Savaresi,et al.  Cluster Selection in Divisive Clustering Algorithms , 2002, SDM.

[66]  N. Tallent Psychological testing. , 1960, The American journal of nursing.

[67]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[68]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[69]  Nigel Ford,et al.  Web search strategies and human individual differences: Cognitive and demographic factors, Internet attitudes, and approaches: Research Articles , 2005 .

[70]  Melody Y. Ivory,et al.  Evolution of web site design patterns , 2005, TOIS.

[71]  Min Liu,et al.  The Effect of Hypermedia Assisted Instruction on Second Language Learning , 1993 .

[72]  R. Riding,et al.  Cognitive Styles and Learning Strategies , 2013 .

[73]  N. Ford,et al.  Gender differences in Internet perceptions and use , 1996 .

[74]  Paul van Schaik,et al.  The influence of font type and line length on visual search and information retrieval in web pages , 2006, Int. J. Hum. Comput. Stud..

[75]  Taesung Park,et al.  Statistical tests for identifying differentially expressed genes in time-course microarray experiments , 2003, Bioinform..

[76]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[77]  Viswanath Venkatesh,et al.  Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model , 2000, Inf. Syst. Res..

[78]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.