Source localization of posterior slow waves of youth using dipole modeling

Posterior slow waves of youth have a well‐known electroencephalographic pattern that peaks in adolescence and usually disappears in adulthood. In general, posterior slow waves of youth are regarded as normal, but some reports have suggested that their presence is related to immature personalities or inappropriate social behavior. The physiological significance of this electroencephalographic pattern, however, remains unclear. The purpose of this study was to investigate the neural origins of posterior slow waves of youth using dipole source modeling.

[1]  R. Kakigi,et al.  Electroencephalographic Dipole Source Modeling of Frontal Intermittent Rhythmic Delta Activity , 2012, Neuropsychobiology.

[2]  M. Fuchs,et al.  Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy , 2010, Clinical Neurophysiology.

[3]  Michelle K. Jetha,et al.  Electrophysiological changes during adolescence: A review , 2010, Brain and Cognition.

[4]  K. Jellinger,et al.  Practical Guide for Clinical Neurophysiologic Testing: EEG , 2009 .

[5]  Emi Tanaka,et al.  Common cortical responses evoked by appearance, disappearance and change of the human face , 2009, BMC Neuroscience.

[6]  R. Kakigi,et al.  Dipole Source Analysis of Temporal Slow Waves in the Elderly , 2008, Neuropsychobiology.

[7]  Y. Shon,et al.  Source Localization of Triphasic Waves: Implications for the Pathophysiological Mechanism , 2007, Clinical EEG and neuroscience.

[8]  M. Phillips,et al.  Annotation: Development of facial expression recognition from childhood to adolescence: behavioural and neurological perspectives. , 2004, Journal of child psychology and psychiatry, and allied disciplines.

[9]  Thomas Elbert,et al.  Left-hemispheric abnormal EEG activity in relation to impairment and recovery in aphasic patients. , 2004, Psychophysiology.

[10]  J. Gotman,et al.  A simulation study of the error in dipole source localization for EEG spikes with a realistic head model , 2003, Clinical Neurophysiology.

[11]  R Kakigi,et al.  Human face perception traced by magneto- and electro-encephalography. , 1999, Brain research. Cognitive brain research.

[12]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[13]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[14]  R. Aird,et al.  Occipital and posterior electroencephalographic rhythms. , 1959, Electroencephalography and clinical neurophysiology.

[15]  R. Cohn,et al.  The correlation of bilateral occipital slow activity in the human EEG with certain disorders of behavior. , 1958, The American journal of psychiatry.

[16]  Thoru Yamada,et al.  Comprar Practical Guide for Clinical Neurophysiologic Testing | Dr Thoru Yamada MD | 9780781778619 | Lippincott Williams & Wilkins , 2009 .

[17]  Elizabeth A. Molloy,et al.  Neurodevelopment and Schizophrenia: Brain development in healthy children and adolescents: magnetic resonance imaging studies , 2004 .

[18]  R. Murray,et al.  Neurodevelopment and Schizophrenia , 2005 .

[19]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[20]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .