Vibrational spectroscopic study of the natural layered double hydroxide manasseite now defined as hydrotalcite-2H-Mg6Al2(OH)16[CO3]⋅4H2O.

[1]  J. Génin,et al.  Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides , 2012, Mineralogical Magazine.

[2]  R. Frost,et al.  Raman spectroscopic study of the hydrotalcite desautelsite Mg6Mn2CO3(OH)16·4H2O , 2005 .

[3]  A. Musumeci,et al.  Intercalation of hydrotalcites with hexacyanoferrate(II) and (III)—a thermoRaman spectroscopic study , 2005 .

[4]  A. Musumeci,et al.  Thermal decomposition of hydrotalcite with chromate, molybdate or sulphate in the interlayer , 2005 .

[5]  R. Frost,et al.  Raman spectroscopy of synthetic and natural iowaite. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  R. Frost,et al.  Near-infrared spectroscopy of stitchtite, iowaite, desautelsite and arsenate exchanged takovite and hydrotalcite. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  R. Frost,et al.  Thermal decomposition of synthetic hydrotalcites reevesite and pyroaurite , 2004 .

[8]  R. Frost,et al.  Vibrational spectroscopy of stichtite. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  R. Frost,et al.  Infrared spectroscopic study of natural hydrotalcites carrboydite and hydrohonessite. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  R. Frost,et al.  Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer , 2003 .

[11]  R. Frost,et al.  The role of water in synthesised hydrotalcites of formula MgxZn6-xCr2(OH)16(CO3).4H2O and NixCo6-xCr2(OH)16(CO3).4H2O: an infrared spectroscopic study , 2003 .

[12]  R. Frost,et al.  Molecular assembly in synthesised hydrotalcites of formula Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O--a vibrational spectroscopic study. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  R. Frost,et al.  Evidence for molecular assembly in hydrotalcites , 2002 .

[14]  R. Frost,et al.  Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al-hydrotalcite , 2002 .

[15]  R. Frost,et al.  The effects of various hydrothermal treatments on magnesium-aluminium hydrotalcites , 2000 .

[16]  Eugen Libowitzky,et al.  Korrelation von O*H-Streckfrequenzen und O*H{ctdot};O-Wasserstoffbrückenlängenin Mineralen , 1999 .

[17]  A. Zaitsev,et al.  Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia , 1995 .

[18]  H. Lutz Hydroxide ions in condensed materials — Correlation of spectroscopic and structural data , 1995 .

[19]  V. Drits,et al.  Polytype Diversity of the Hydrotalcite-Like Minerals II. Determination of the Polytypes of Experimentally Studied Varieties , 1993 .

[20]  V. Drits,et al.  New Members of the Hydrotalcite-Manasseite Group , 1987 .

[21]  W. Mikenda,et al.  Stretching frequency versus bond distance correlation of OD(H)⋯Y (Y N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates , 1986 .

[22]  J. Emsley Very strong hydrogen bonding , 1980 .

[23]  A. Novak,et al.  Hydrogen bonding in solids correlation of spectroscopic and crystallographic data , 1974 .

[24]  M. M. Mortland,et al.  Mixed magnesium-aluminiun hydroxides. I. Preparation and characterization of compounds formed in dialysed systems , 1967, Clay Minerals.

[25]  C. W. Beck Differential thermal analysis curves of carbonate materials , 1950 .