Performance tolerance analysis of birefringent fiber loop for semiconductor optical amplifier pattern effect suppression

In this paper, we analyze the performance of the birefringent fiber loop (BFL) when the settings of the components that construct this module are not perfect. The BFL is employed for suppressing the pattern effect on directly amplified data in a semiconductor optical amplifier (SOA). The analysis is conducted by describing the non-optimum BFL transmission response using Jones matrix method. This allows to formulate a comprehensive model, which is validated by comparing it to the experiment. Then we investigate and specify how sensitive the BFL is to imperfections of its building components by assessing its performance against the output amplitude modulation, power penalty, and crosstalk. For each critical operating parameter, we derive the tolerance range within which these performance metrics are acceptable. The obtained results suggest that the BFL can efficiently mitigate the SOA pattern effect even if it is built from non-ideal components. This can be achieved provided that these components are designed according to their extracted operating conditions, which are practically satisfiable.

[1]  D. Blumenthal,et al.  A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering , 2000, IEEE Photonics Technology Letters.

[2]  T. Watanabe,et al.  Waveform shaping of chirp-controlled signal by semiconductor optical amplifier using Mach-Zehnder frequency discriminator , 1998, IEEE Photonics Technology Letters.

[3]  M. Bourennane,et al.  Single mode fiber birefringence compensation in Sagnac and "plug & play" interferometric setups. , 2009, Optics express.

[4]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[5]  L.H. Spiekman,et al.  Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications , 2004, Journal of Lightwave Technology.

[6]  C. O'Riordan,et al.  Semiconductor Optical Amplifier Pattern Effect Suppression Using a Birefringent Fiber Loop , 2010, IEEE Photonics Technology Letters.

[7]  O. Frazao,et al.  Theoretical and Experimental Results of High-Birefringent Fiber Loop Mirror With an Output Port Probe , 2012, Journal of Lightwave Technology.

[8]  Vittoria Finazzi,et al.  Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing , 2007 .

[9]  K. Inoue Optical filtering technique to suppress waveform distortion induced in a gain-saturated semiconductor optical amplifier , 1997 .

[10]  Chang-Seok Kim,et al.  Compensation of polarization-dependent loss in transmission fiber gratings by use of a Sagnac loop interferometer. , 2005, Optics letters.

[11]  Guiyun Kai,et al.  Polarization-independent all-fiber flat-top comb filter , 2006 .

[12]  Hon Ki Tsang,et al.  Reduction of bit-pattern dependent errors from a semiconductor optical amplifier using an optical delay interferometer , 2004 .

[13]  N. Dutta,et al.  High speed ultra short pulse fiber ring laser using photonic crystal fiber nonlinear optical loop mirror , 2012 .

[14]  Yong Zhao,et al.  RECENT DEVELOPMENTS AND APPLICATIONS OF POLARIZATION-MAINTAINING FIBER LOOP MIRRORS , 2012 .

[15]  Paul R. Prucnal,et al.  New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion , 2005 .

[16]  P. Jeppesen,et al.  Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter , 2001 .

[17]  Kyriakos E. Zoiros,et al.  Theoretical analysis of pattern effect suppression in semiconductor optical amplifier utilizing optical delay interferometer , 2008 .

[18]  Zoe V. Rizou,et al.  On the compensation of chirp induced from semiconductor optical amplifier on RZ data using optical delay interferometer , 2011 .

[19]  Xiaobin Xu,et al.  Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers , 2012 .

[20]  C. Chow,et al.  Polarization-independent DPSK demodulation using a birefringent fiber loop , 2005, IEEE Photonics Technology Letters.

[21]  Prasanta Kumar Datta,et al.  Patterning characteristics and its alleviation in high bit-rate amplification of bulk semiconductor optical amplifier , 2010 .

[22]  Y. Kotaki,et al.  High-output-power polarization-insensitive semiconductor optical amplifier , 2003 .

[23]  Dexiu Huang,et al.  Experimental study of SOA-based NRZ-to-PRZ conversion and distortion elimination of amplified NRZ signal using spectral filtering , 2008 .

[24]  Evgeny A. Kuzin,et al.  Alignment of a birefringent fiber Sagnac interferometer by fiber twist , 1999 .

[25]  Lowell L. Scheiner,et al.  Fiber-Optic Communications Technology , 2000 .

[26]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[27]  S. Chandrasekhar,et al.  10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier , 2004, IEEE Photonics Technology Letters.

[28]  Guoyong Sun,et al.  Polarization controlled tunable multiwavelength SOA-fiber laser based on few-mode polarization maintaining fiber loop mirror , 2011 .

[29]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[30]  Rajinder Singh Kaler,et al.  Transmission performance of 20 × 10 Gb/s WDM signals using cascaded optimized SOAs with OOK and DPSK modulation formats , 2006 .

[31]  P. Torres-Ferrera,et al.  Impact of channel-spacing on next 400 Gb/s Ethernet 40-km PMD based on 16×25Gb/s WDM architecture , 2014 .

[32]  Byoungho Lee,et al.  Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter , 2004 .

[33]  Jing Xu,et al.  Investigation of Patterning Effects in Ultrafast SOA-Based Optical Switches , 2010, IEEE Journal of Quantum Electronics.

[34]  Surinder Singh An approach to enhance the receiver sensitivity with SOA for optical communication systems , 2011 .

[35]  Hodeok Jang,et al.  Transmission performance of 10-Gb/s 1550-nm transmitters using semiconductor optical amplifiers as booster amplifiers , 2003 .

[36]  A. Hatziefremidis,et al.  Design Analysis and Performance Optimization of a Lyot Filter for Semiconductor Optical Amplifier Pattern Effect Suppression , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  S. Randel,et al.  Analysis of switching windows in a gain-transparent-SLALOM configuration , 2000, Journal of Lightwave Technology.

[38]  F. MacWilliams,et al.  Pseudo-random sequences and arrays , 1976, Proceedings of the IEEE.

[39]  Qi Jie Wang,et al.  All-optical logic OR gate using SOA and delayed interferometer , 2006 .

[40]  Kumar N. Sivarajan,et al.  Optical Networks: A Practical Perspective , 1998 .

[41]  Xinliang Zhang,et al.  All-optical clock recovery of 20 Gbit/s NRZ-DPSK signals using polarization-maintaining fiber loop mirror filter and semiconductor optical amplifier fiber ring laser , 2009 .

[42]  J.U. Kang,et al.  Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer , 2003, IEEE Photonics Technology Letters.

[43]  P. Andrekson,et al.  Polarization independent demultiplexing in a polarization diversity nonlinear optical loop mirror , 1997, IEEE Photonics Technology Letters.

[44]  A. Filios,et al.  Pattern-Effect Reduction Using a Cross-Gain Modulated Holding Beam in Semiconductor Optical In-Line Amplifier , 2006, Journal of Lightwave Technology.

[45]  Orlando Frazão,et al.  Recent Advances in High-Birefringence Fiber Loop Mirror Sensors , 2007, Sensors.

[46]  Sergei K. Turitsyn,et al.  RZ-DPSK transmission at 80 Gbit/s channel rate using in-line semiconductor optical amplifiers , 2006 .

[47]  Jin-U. Kang,et al.  Nonlinear switching and optical limiting in a double-loop fibre Sagnac filter , 2004 .