Spatiotemporal Patterns of Urbanization in the Three Most Developed Urban Agglomerations in China Based on Continuous Nighttime Light Data (2000-2018)

Urban agglomeration is an advanced spatial form of integrating cities, resulting from the global urbanization of recent decades. Understanding spatiotemporal patterns and evolution is of great importance for improving urban agglomeration management. This study used continuous time-series NTL data from 2000 to 2018 combined with land-use images to investigate the spatiotemporal patterns of urbanization in the three most developed urban agglomerations in China over the past two decades: the Beijing–Tianjin–Hebei urban agglomeration (BTH), the Yangtze River Delta urban agglomeration (YRD), and the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). The NTL intensity indexes, dynamic thresholds, extracted urban areas, and landscape metrics were synthetically used to facilitate the analysis. This study found that the urbanization process in the study areas could be divided into three stages: rapid urbanization in core cities from 2000 to 2010, a fluctuating urbanization process in both core cities and surrounding cities from 2010 to 2015, and stable urbanization, mainly in surrounding cities with a medium size after 2015. Meanwhile, the urbanization level of GBA was higher than that of YRD and BTH. However, with the acceleration of urban development in YRD, the gap in the urbanization level between GBA and YRD narrowed significantly in the third stage. In addition, this study confirmed that the scattered, medium-sized cities in YRD and GBA were more developed than those in BTH. This study showed that continuous NTL data could be effectively applied to monitor the urbanization patterns of urban agglomerations.