Glucose Degradation Products (GDP’s) and Peritoneal Changes in Patients on Chronic Peritoneal Dialysis: Will New Dialysis Solutions Prevent these Changes?

[1]  K. Craig,et al.  The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. , 2004, Kidney international.

[2]  B. Rutkowski,et al.  Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. , 2004, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[3]  P. Rutherford,et al.  Clinical experience with two physiologic bicarbonate/lactate peritoneal dialysis solutions in automated peritoneal dialysis. , 2003, Kidney international. Supplement.

[4]  Geraint T. Williams,et al.  The natural course of peritoneal membrane biology during peritoneal dialysis. , 2003, Kidney international. Supplement.

[5]  Y. Ohta,et al.  Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. , 2003, Kidney international.

[6]  K. Książek,et al.  Glucose degradation products in peritoneal dialysis fluids: do they harm? , 2003, Kidney international. Supplement.

[7]  C. Wanner,et al.  Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? , 2003, Kidney international.

[8]  M. Nangaku,et al.  Affinity adsorption of glucose degradation products improves the biocompatibility of conventional peritoneal dialysis fluid. , 2003, Kidney international.

[9]  K. Craig,et al.  Reduced systemic AGE formation with a low GDP solution (CAPD balance): data from the multicentre European balance trial , 2002 .

[10]  M. Nangaku,et al.  Efficient in vitro lowering of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis fluid. , 2002, Kidney international.

[11]  S. Greenberg Cerebral Amyloid Angiopathy and Vessel Dysfunction , 2002, Cerebrovascular Diseases.

[12]  J. van de Voorde,et al.  Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. , 2002, Journal of the American Society of Nephrology : JASN.

[13]  C. Holmes,et al.  Interleukin-6 Levels Decrease in Effluent from Patients Dialyzed with Bicarbonate/Lactate–Based Peritoneal Dialysis Solutions , 2001, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[14]  A. Wieslander,et al.  Glucose Degradation Products in Peritoneal Dialysis Fluids: How they can be Avoided , 2001, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[15]  P. Södersten,et al.  Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. , 2001, Kidney international.

[16]  P. Razeghi,et al.  Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. , 2001, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[17]  G. Remuzzi,et al.  The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. , 2001, Journal of the American Society of Nephrology : JASN.

[18]  A. Christensson,et al.  Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. , 2001, Kidney international.

[19]  M. Park,et al.  Effects of Bicarbonate/Lactate Solution on Peritoneal Advanced Glycosylation End-Product Accumulation , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[20]  A. Wieslander,et al.  Biological Significance of Reducing Glucose Degradation Products in Peritoneal Dialysis Fluids , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[21]  M. Pischetsrieder,et al.  First In Vitro and In Vivo Experiences with Stay·Safe Balance, A pH-Neutral Solution in a Dual-Chambered Bag , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[22]  K. Nolph,et al.  Peritoneal Accumulation of Advanced Glycosylation End-Products in Diabetic Rats on Dialysis with Icodextrin , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[23]  M. Tuncer,et al.  Chemical peritonitis associated with high dialysate acetaldehyde concentrations. , 2000, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[24]  A. Tranaeus A Long-Term Study of a Bicarbonate/Lactate-Based Peritoneal Dialysis Solution — Clinical Benefits , 2000 .

[25]  A. Wieslander,et al.  Can We Prevent the Degradation of Glucose in Peritoneal Dialysis Solutions? , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[26]  M. Pischetsrieder Chemistry of Glucose and Biochemical Pathways of Biological Interest , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[27]  J. Passlick–Deetjen,et al.  Lactate-Buffered and Bicarbonate-Buffered Solutions with Less Glucose Degradation Products in a Two-Chamber System , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[28]  A. C. van der Wal,et al.  Neoangiogenesis in the Peritoneal Membrane , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[29]  U. Frei,et al.  Effect of glucose degradation products on human peritoneal mesothelial cell function. , 2000, Journal of the American Society of Nephrology : JASN.

[30]  A. Tranaeus A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution--clinical benefits. The Bicarbonate/Lactate Study Group. , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[31]  C. Schalkwijk,et al.  Induction of 1,2-Dicarbonyl Compounds, Intermediates in the Formation of Advanced Glycation End-Products, during Heat-Sterilization of Glucose-Based Peritoneal Dialysis Fluids , 1999, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[32]  G. Cancarini,et al.  Low concentrations of glucose degradation products in peritoneal dialysis fluids and their impact on biocompatibility parameters: prospective cross-over study with a three-compartment bag. , 1999, Advances in peritoneal dialysis. Conference on Peritoneal Dialysis.

[33]  J. Passlick–Deetjen,et al.  Randomized long-term evaluation of bicarbonate-buffered CAPD solution. , 1998, Kidney international.

[34]  T. Henle,et al.  3-Deoxyglucosone, a Promoter of Advanced Glycation end Products in Fluids for Peritoneal Dialysis , 1998, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[35]  A. Wieslander,et al.  Effects of Acidity, Glucose Degradation Products, and Dialysis Fluid Buffer Choice on Peritoneal Solute and Fluid Transport in Rats , 1998, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[36]  R. Gokal,et al.  Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. , 1998, Kidney international.

[37]  M. Davies,et al.  Response of the human peritoneal mesothelial cell to injury: an in vitro model of peritoneal wound healing. , 1998, Kidney international.

[38]  D. Millar,et al.  Glycation and Advanced Glycation End-Product Formation with Icodextrin and Dextrose , 1997, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[39]  N. Topley,et al.  Human peritoneal fibroblast proliferation in 3-dimensional culture: modulation by cytokines, growth factors and peritoneal dialysis effluent. , 1997, Kidney international.

[40]  T. Shigematsu,et al.  Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. , 1997, Kidney international.

[41]  M. Feriani Buffers: bicarbonate, lactate and pyruvate. , 1996, Kidney international. Supplement.

[42]  M. Flessner,et al.  Small-solute transport across specific peritoneal tissue surfaces in the rat. , 1996, Journal of the American Society of Nephrology : JASN.

[43]  G. Sozzi,et al.  Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. , 1996, Cytogenetics and cell genetics.

[44]  K. Nitta,et al.  Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. , 1996, Nephron.

[45]  A. Wieslander,et al.  Are Aldehydes in Heat-Sterllized Peritoneal Dialysis Fluids Toxic in Vitro? , 1995, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[46]  J. Harwood,et al.  Synthesis of Phospholipids by Human Peritoneal Mesothelial Cells , 1994, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[47]  E. Friedman,et al.  Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure , 1994, The Lancet.

[48]  A. Wieslander,et al.  Heat Sterilization of Fluids for Peritoneal Dialysis Gives Rise to Aldehydes , 1993, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[49]  J. Dobbie,et al.  Peritoneal Ultrastructure and Changes with Continuous Ambulatory Peritoneal Dialysis , 1993, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[50]  W. Luttmann,et al.  Human peritoneal mesothelial cells synthesize interleukin-6: Induction by IL-1β and TNFα , 1993 .

[51]  A. Wieslander,et al.  Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. , 1991, Kidney international.

[52]  Lloyd Jk,et al.  Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. , 1990 .

[53]  J. Dobbie,et al.  Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. , 1990, Advances in peritoneal dialysis. Conference on Peritoneal Dialysis.

[54]  J. Dobbie,et al.  Phosphatidylcholine synthesis by peritoneal mesothelium: its implications for peritoneal dialysis. , 1988, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[55]  I. Henderson,et al.  Potentially Irritant Glucose Metabolites in Unused CAPD Fluid , 1986 .

[56]  V. Armstrong,et al.  Effect of dialysate glucose load on plasma glucose and glucoregulatory hormones in CAPD patients. , 1985, Nephron.

[57]  D. Oreopoulos,et al.  Lipid Abnormalities in Patients Undergoing Continuous Ambulatory Peritoneal Dialysis , 1983 .

[58]  J. Kopple,et al.  Glucose absorption during continuous ambulatory peritoneal dialysis. , 1981, Kidney international.

[59]  E. Frohlich VASCULAR EFFECTS OF THE KREBS INTERMEDIATE METABOLITES. , 1965, The American journal of physiology.