Hybrid-Trefftz six-node triangular finite element models for Helmholtz problem

In this paper, six-node hybrid-Trefftz triangular finite element models which can readily be incorporated into the standard finite element program framework in the form of additional element subroutines are devised via a hybrid variational principle for Helmholtz problem. In these elements, domain and boundary variables are independently assumed. The former is truncated from the Trefftz solution sets and the latter is obtained by the standard polynomial-based nodal interpolation. The equality of the two variables are enforced along the element boundary. Both the plane-wave solutions and Bessel solutions are employed to construct the domain variable. For full rankness of the element matrix, a minimal of six domain modes are required. By using local coordinates and directions, rank sufficient and invariant elements with six plane-wave modes, six Bessel solution modes and seven Bessel solution modes are devised. Numerical studies indicate that the hybrid-Trefftz elements are typically 50% less erroneous than their continuous Galerkin element counterpart.

[1]  O. Mahrenholtz,et al.  Diffraction loads on multiple vertical cylinders with rectangular cross section by Trefftz-type finite elements , 2000 .

[2]  Satya N. Atluri,et al.  An assumed displacement hybrid finite element model for linear fracture mechanics , 1975 .

[3]  Theodore H. H. Pian,et al.  State-of-the-art development of hybrid/mixed finite element method , 1995 .

[4]  Bernard Peseux,et al.  A numerical integration scheme for special finite elements for the Helmholtz equation , 2003 .

[5]  Ismael Herrera,et al.  Trefftz Method: A General Theory , 2000 .

[6]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[7]  Robert L. Spilker,et al.  Plane isoparametric hybrid‐stress elements: Invariance and optimal sampling , 1981 .

[8]  C. Kimberling Triangle centers and central triangles , 2001 .

[9]  J. Jirousek,et al.  Basis for development of large finite elements locally satisfying all field equations , 1978 .

[10]  Theodore H. H. Pian,et al.  A hybrid‐element approach to crack problems in plane elasticity , 1973 .

[11]  K. Y. Sze,et al.  A hybrid‐Trefftz finite element model for Helmholtz problem , 2008 .

[12]  K. Y. Sze,et al.  Analysis of Electromechanical Stress Singularity in Piezoelectrics by Computed Eigensolutions and Hybrid-trefftz Finite Element Models , 2006 .

[13]  C. L. Chow,et al.  On invariance of isoparametric hybrid/mixed elements , 1992 .

[14]  Wim Desmet,et al.  Hybrid finite element-wave-based method for steady-state interior structural-acoustic problems , 2005 .

[15]  J. A. Freitas,et al.  Non-conventional formulations for the finite element method , 1996 .

[16]  K. Y. Sze,et al.  Four- and eight-node hybrid-Trefftz quadrilateral finite element models for helmholtz problem , 2010 .

[17]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[18]  Wim Desmet,et al.  A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems , 2000 .

[19]  K. Y. Sze,et al.  An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .

[20]  P. Ortiz,et al.  An improved partition of unity finite element model for diffraction problems , 2001 .

[21]  Ismael Herrera,et al.  Connectivity as an alternative to boundary integral equations: Construction of bases. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Małgorzata Stojek,et al.  LEAST-SQUARES TREFFTZ-TYPE ELEMENTS FOR THE HELMHOLTZ EQUATION , 1998 .

[23]  Charbel Farhat,et al.  The discontinuous enrichment method for multiscale analysis , 2003 .

[24]  Pigache A SEMITOROIDAL REFLEX DISCHARGE AS A PROPULSION DEVICE. Technical Report No. 0253-4 , 1963 .

[25]  Q. Qin,et al.  Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach , 2003 .

[26]  Charbel Farhat,et al.  Three‐dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid‐frequency Helmholtz problems , 2006 .

[27]  Bert Pluymers,et al.  Trefftz-Based Methods for Time-Harmonic Acoustics , 2007 .

[28]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[29]  R. Van Keer,et al.  Global and local Trefftz boundary integral formulations for sound vibration , 2002 .

[30]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[31]  Charbel Farhat,et al.  Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems , 2004 .

[32]  O. C. Zienkiewicz,et al.  Solution of Helmholtz equation by Trefftz method , 1991 .

[33]  Omar Laghrouche,et al.  Short wave modelling using special finite elements , 2000 .

[34]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .

[35]  G. Gabard Exact integration of polynomial–exponential products with application to wave-based numerical methods , 2009 .

[36]  Jiang-Ren Chang,et al.  An asymmetric indirect Trefftz method for solving free-vibration problems , 2004 .

[37]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[38]  J. Jiroušek,et al.  Survey of Trefftz-type element formulations , 1997 .

[39]  Wim Desmet,et al.  Application of an efficient wave-based prediction technique for the analysis of vibro-acoustic radiation problems , 2004 .

[40]  Jan Mandel,et al.  The Finite Ray Element Method for the Helmholtz Equation of Scattering: First Numerical Experiments , 1997 .

[41]  Isaac Harari,et al.  Studies of the discontinuous enrichment method for two-dimensional acoustics , 2008 .

[42]  Ismael Herrera,et al.  Trefftz method: Fitting boundary conditions , 1987 .

[43]  C. Cismaşiu,et al.  Hybrid-trefftz displacement element for spectral analysis of bounded and unbounded media , 2003 .