Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography

Hierarchy provides a unifying principle for the macroscale organization of anatomical and functional properties across primate cortex, yet the microscale bases of specialization across human cortex are poorly understood. Cortical hierarchy is conventionally informed by invasive measurements of long-range projections, creating the need for a principled proxy measure of hierarchy in humans. Moreover, cortex exhibits marked interareal variation in patterns of gene expression, yet organizing principles of its transcriptional architecture remain unclear. We hypothesized that functional specialization of human cortical microcircuitry involves hierarchical gradients of gene expression. We found that a noninvasive neuroimaging measure, the MRI-derived myelin map, reliably indexes hierarchy and closely resembles the dominant pattern of transcriptomic variation across human cortex. We found strong hierarchical gradients in expression profiles of genes related to microcircuit function and neuropsychiatric disorders. Our findings suggest that hierarchy defines an axis shared by the transcriptomic and anatomical architectures of human cortex, and that hierarchical gradients of microscale properties contribute to macroscale specialization of cortical function.

[1]  K. Rockland,et al.  The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. , 2002, Cerebral cortex.

[2]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[3]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[4]  N. Daw,et al.  Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor , 2005, Science.

[5]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[6]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[7]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[8]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[9]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[10]  Allan R. Jones,et al.  Canonical Genetic Signatures of the Adult Human Brain , 2015, Nature Neuroscience.

[11]  René S. Kahn,et al.  Connectome Disconnectivity and Cortical Gene Expression in Patients With Schizophrenia , 2017, Biological Psychiatry.

[12]  D. Geschwind,et al.  Correspondence between Resting-State Activity and Brain Gene Expression , 2015, Neuron.

[13]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[14]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[15]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[16]  M. Kringelbach,et al.  Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders , 2014, Neuron.

[17]  G. Elston,et al.  A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. , 2004, Cerebral cortex.

[18]  P. Lennie Single Units and Visual Cortical Organization , 1998, Perception.

[19]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[20]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[21]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[22]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[23]  S. Kushner,et al.  Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans , 2017, Cerebral cortex.

[24]  W. M. van der Flier,et al.  Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies , 2014, Human molecular genetics.

[25]  Claus C. Hilgetag,et al.  The primate connectome in context: Principles of connections of the cortical visual system , 2016, NeuroImage.

[26]  Huaixing Wang,et al.  A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex , 2008, Proceedings of the National Academy of Sciences.

[27]  Michael Cole,et al.  Cognitive task information is transferred between brain regions via resting-state network topology , 2017 .

[28]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[29]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[30]  G. Elston,et al.  Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[32]  B. Hodson,et al.  The effect of passage in vitro and in vivo on the properties of murine fibrosarcomas. II. Sensitivity to cell-mediated cytotoxicity in vitro. , 1985, British Journal of Cancer.

[33]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[34]  M. Rietschel,et al.  Correlated gene expression supports synchronous activity in brain networks , 2015, Science.

[35]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[36]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[37]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[38]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[39]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[40]  Keiji Tanaka,et al.  Neurochemical gradients along monkey sensory cortical pathways: calbindin‐immunoreactive pyramidal neurons in layers II and III , 1999, The European journal of neuroscience.

[41]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[42]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[43]  C. Honey,et al.  Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story , 2011, The Journal of Neuroscience.

[44]  Paul A. Longley,et al.  Handbook of applied spatial analysis: software tools, methods and applications, edited by M.M. Fischer and A. Getis , 2011 .

[45]  S. Waxman Determinants of conduction velocity in myelinated nerve fibers , 1980, Muscle & nerve.

[46]  Ben D. Fulcher,et al.  A transcriptional signature of hub connectivity in the mouse connectome , 2016, Proceedings of the National Academy of Sciences.

[47]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[48]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[49]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[50]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[51]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[52]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[53]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[54]  Michael Hawrylycz,et al.  Transcriptomic Perspectives on Neocortical Structure, Development, Evolution, and Disease. , 2017, Annual review of neuroscience.

[55]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[56]  Giulio Genovese,et al.  Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia , 2016, Nature Neuroscience.

[57]  Xiao-Jing Wang,et al.  A dendritic disinhibitory circuit mechanism for pathway-specific gating , 2016, Nature Communications.

[58]  John D Murray,et al.  Working Memory and Decision-Making in a Frontoparietal Circuit Model , 2017, The Journal of Neuroscience.

[59]  I. Fujita,et al.  Spinogenesis and Pruning in the Anterior Ventral Inferotemporal Cortex of the Macaque Monkey: An Intracellular Injection Study of Layer III Pyramidal Cells , 2011, Front. Neuroanat..

[60]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[61]  J. Nielsen,et al.  Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics* , 2013, Molecular & Cellular Proteomics.

[62]  Manfred M. Fischer,et al.  Handbook of Applied Spatial AnalysisSoftware Tools, Methods and Applications , 2010 .

[63]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[64]  John H Krystal,et al.  Functional hierarchy underlies preferential connectivity disturbances in schizophrenia , 2015, Proceedings of the National Academy of Sciences.

[65]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[66]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[67]  Tao Wang,et al.  SynaptomeDB: an ontology-based knowledgebase for synaptic genes , 2012, Bioinform..

[68]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[69]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[70]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.