Fully coupled electromagnetic-thermal-mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y-ZrO2

Direct and hybrid microwave sintering of 3Y-ZrO2 are comparatively studied at frequency of 2.45 GHz. Using the continuum theory of sintering, a fully coupled electromagnetic-thermal-mechanical (EMTM) finite element simulation is carried out to predict powder samples deformation during their microwave processing. Direct and hybrid heating configurations are computationally tested using advanced heat transfer simulation tools including the surface to surface thermal radiation boundary conditions and a numeric proportional-integral-derivative regulation (PID). The developed modeling framework shows a good agreement of the calculation results with the known experimental data on the microwave sintering of 3Y-ZrO2 in terms of the densification kinetics. It is shown that the direct heating configuration renders highly hot spot effects resulting in nonhomogenous densification causing processed specimen's final shape distortions. Compared with the direct heating, the hybrid heating configuration provides a reduction of the thermal inhomogeneity along with a densification homogenization. As a result of the hybrid heating, the total densification of the specimen is attained without specimen distortions. It is also shown that the reduction of the sample size has a stabilization effect on the temperature and relative density spatial distributions.

[1]  E. Olevsky,et al.  Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO 2 , 2017, 2011.12403.

[2]  V. Mishra,et al.  Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material , 2016 .

[3]  M. L. Sharon Nai,et al.  Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles , 2016 .

[4]  C. Tsui,et al.  Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites , 2016 .

[5]  D. Bouvard,et al.  Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder , 2015 .

[6]  I. Reaney,et al.  Enhancing Properties in Microwave Ceramics Using a Designer Sintering Aid , 2015 .

[7]  F. Karimzadeh,et al.  Finite Element modeling of Microwave-Assisted Hot Press process in a multimode furnace , 2015 .

[8]  Christopher D. Haines,et al.  Spark Plasma Sintering of Commercial Zirconium Carbide Powders: Densification Behavior and Mechanical Properties , 2015, Materials.

[9]  J. Uche,et al.  Numerical study of cullet glass subjected to microwave heating and SiC susceptor effects. Part I: Combined electric and thermal model , 2015 .

[10]  Vivek Jain,et al.  Microwave Processing of Materials and Applications in Manufacturing Industries: A Review , 2015 .

[11]  F. Zuo,et al.  Microwave versus conventional sintering: Estimate of the apparent activation energy for densification of α-alumina and zinc oxide , 2014 .

[12]  S. Marinel,et al.  Microwave sintering of large size pieces with complex shape , 2014 .

[13]  S. Marinel,et al.  Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina , 2013 .

[14]  F. Zuo,et al.  Non-thermal effect on densification kinetics during microwave sintering of α-alumina , 2013 .

[15]  E. Olsson,et al.  A numerical analysis of cold powder compaction based on micromechanical experiments , 2013 .

[16]  E. Olevsky,et al.  Ponderomotive effects during contact formation in microwave sintering , 2013 .

[17]  Christopher D. Haines,et al.  Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design , 2013, Materials.

[18]  M. Cao,et al.  Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range , 2013 .

[19]  E. Olevsky,et al.  Microwave Sintering: Fundamentals and Modeling , 2013 .

[20]  Y. F. Yang,et al.  Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys , 2013, Metallurgical and Materials Transactions A.

[21]  Xuan Zhou,et al.  Influence of pyrolysis temperature on structure and dielectric properties of polycarbosilane derived silicon carbide ceramic , 2012 .

[22]  G. Zheng,et al.  Complex Permittivity and Microwave Absorbing Property of Si3N4{SiC Composite Ceramic , 2012 .

[23]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability , 2012 .

[24]  L. Kumar,et al.  COMPARATIVE ANALYSIS OF RECTANGULAR AND CIRCULAR WAVEGUIDE USING MATLAB SIMULATION , 2012 .

[25]  E. Olevsky,et al.  The microwave ponderomotive effect on ceramic sintering , 2012 .

[26]  Thomas Böhlke,et al.  Computational homogenization of elasto-plastic porous metals , 2012 .

[27]  Tanmay Basak,et al.  Microwave material processing—a review , 2012 .

[28]  Thierry Coupez,et al.  Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method , 2012 .

[29]  L. Costa,et al.  Electromagnetic and thermal history during microwave heating , 2011 .

[30]  D. Folz,et al.  Development of a microwave dilatometer for generating master sintering curves , 2011 .

[31]  David Iron,et al.  Instability thresholds in the microwave heating model with exponential non-linearity , 2011, European Journal of Applied Mathematics.

[32]  K. Wijayantha,et al.  Microwave-assisted low temperature fabrication of nanostructured α-Fe2O3 electrodes for solar-driven hydrogen generation , 2010 .

[33]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[34]  D. Bouvard,et al.  Densification and microstructure evolution of Y-Tetragonal Zirconia Polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity , 2010 .

[35]  N. D. Theodore,et al.  Dopant activation in ion implanted silicon by microwave annealing , 2009 .

[36]  J. Aguilar-Garib,et al.  Estimating resistive and dielectric effects during microwave heating of Fe0.22Ni0.67Mn2.11O4 , 2009 .

[37]  Debabrata Basu,et al.  Prospects of microwave processing: An overview , 2008 .

[38]  D. V. Louzguine-Luzgin,et al.  Heating of metallic powders by microwaves: Experiment and theory , 2008 .

[39]  Manoj Gupta,et al.  Microwaves and Metals: Gupta/Microwaves and Metals , 2007 .

[40]  A. Fontana,et al.  Reproducibility and scalability of solvent-free microwave-assisted reactions: from domestic ovens to controllable parallel applications. , 2007, Combinatorial chemistry & high throughput screening.

[41]  Dinesh K. Agrawal,et al.  Microwave Sintering of Ceramics, Composites and Metallic Materials, and Melting of Glasses , 2006 .

[42]  Jianxin Wang Evidence for the microwave effect during hybrid sintering and annealing of ceramics , 2006 .

[43]  Yu. V. Bykov,et al.  Microwave heating of conductive powder materials , 2006 .

[44]  A. G. Whittaker Diffusion in microwave-heated ceramics , 2005 .

[45]  R. Silberglitt,et al.  Comparison of Microwave Hybrid and Conventional Heating of Preceramic Polymers to Form Silicon Carbide and Silicon Oxycarbide Ceramics , 2004 .

[46]  J. Binner,et al.  Microwave Sintering of Ceramics: What Does it Offer? , 2004 .

[47]  Angela O. Nieckele,et al.  Numerical Modeling of an Industrial Aluminum Melting Furnace , 2004 .

[48]  Gary L. Messing,et al.  Microwave Sintering of Alumina at 2.45 GHz , 2003 .

[49]  Sang-Won Yun,et al.  Novel TE/sub 10/spl delta// rectangular-waveguide-type resonators and their bandpass filter applications , 2002 .

[50]  Y. Carmel,et al.  Microwave sintering of ZnO at ultra high heating rates , 2001 .

[51]  Yu. V. Bykov,et al.  High-temperature microwave processing of materials , 2001 .

[52]  K. Hisano,et al.  Measurement of Spectral Emissivity and Thermal Conductivity of Zirconia by Thermal Radiation Calorimetry , 2001 .

[53]  E. Olevsky,et al.  Effect of gravity on dimensional change during sintering—I. Shrinkage anisotropy , 2000 .

[54]  E. Olevsky,et al.  Effect of gravity on dimensional change during sintering—II. Shape distortion , 2000 .

[55]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[56]  Y. Carmel,et al.  Simulation of microwave sintering of ceramic bodies with complex geometry , 1999, IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297).

[57]  Rustum Roy,et al.  Full sintering of powdered-metal bodies in a microwave field , 1999, Nature.

[58]  B. Vaidhyanathan,et al.  Synthesis of inorganic solids using microwaves , 1999 .

[59]  Y. Makino,et al.  Sintering of Al2O3-ZrO2 Composites Using Millimeter-Wave Radiation , 1998 .

[60]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[61]  K. Rybakov,et al.  Microwave ponderomotive forces in solid-state ionic plasmas* , 1998 .

[62]  M. F. Iskander,et al.  Development of a multigrid FDTD code for three-dimensional applications , 1997 .

[63]  G. Kriegsmann Hot spot formation in microwave heated ceramic fibres , 1997 .

[64]  Hal D. Kimrey,et al.  Enhanced diffusion in sapphire during microwave heating , 1997 .

[65]  K. Rybakov,et al.  Dynamics of microwave-induced currents in ionic crystals , 1997 .

[66]  A. Rowley,et al.  Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia , 1996, Journal of Materials Science.

[67]  Semenov,et al.  Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field. , 1995, Physical review. B, Condensed matter.

[68]  D. Skamser,et al.  Microwave processing of ceramics , 1995 .

[69]  M. Iskander,et al.  FDTD simulation of microwave sintering of ceramics in multimode cavities , 1994 .

[70]  H. Wadley,et al.  Modeling the densification of metal matrix composite monotape , 1993 .

[71]  M. Shtern,et al.  Theory of nonlinearly viscous and plastic behavior of porous materials , 1987 .

[72]  K. S. Packard,et al.  The Origin of Waveguides: A Case of Multiple Rediscovery , 1984 .

[73]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[74]  E. Snitzer Cylindrical Dielectric Waveguide Modes , 1961 .

[75]  K. Pitchaia,et al.  Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens , 2015 .

[76]  Chak Yin Tang,et al.  Microwave sintering and characterization of polypropylene/multi-walled carbon nanotube/hydroxyapatite composites , 2014 .

[77]  Thierry Coupez,et al.  Modeling of heat transfer and turbulent flows inside industrial furnaces , 2013, Simul. Model. Pract. Theory.

[78]  D. Agrawal Microwave sintering of metal powders , 2013 .

[79]  Fan Li,et al.  Modelling “Nano-Effects” in Sintering , 2012 .

[80]  David D. Jones,et al.  Modeling of Susceptor Assisted Microwave Heating in Domestic Ovens , 2011 .

[81]  Bala Vaidhyanathan,et al.  Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering , 2008 .

[82]  H. Riedel,et al.  Simulation of Microwave Sintering with Advanced Sintering Models , 2006 .

[83]  M. Ward,et al.  THE STABILITY AND DYNAMICS OF HOT-SPOT SOLUTIONS TO TWO ONE-DIMENSIONAL MICROWAVE HEATING MODELS , 2004 .

[84]  S. Arabia,et al.  Microwave Measurements of the Dielectric Properties of Silicon Carbide at High Temperature , 2002 .

[85]  Y. Bykov,et al.  Sintering of nanostructural titanium oxide using millimeter-wave radiation , 1999 .

[86]  Timothy R. Marchant,et al.  Modelling microwave heating , 1996 .

[87]  D. Johnson Microwave and plasma sintering of ceramics , 1991 .