Shadow of a regular black hole in scalar-tensor-vector gravity theory

We investigate the shadow cast by a regular black hole in scalar-tensor-vector mOdified gravity theory. This black hole differs from a Schwarzschild-Kerr black hole by the dimensionless parameter $\beta$. The size of the shadow depends on this parameter. Increasing the value of the parameter $\beta$ shrinks the shadow. A critical value of the parameter $\beta$ is found to be $\beta_{\rm crit}=0.40263$. The shadow for the horizonless dark compact object has been analysed for the static, spherically symmetric case and compared with M87* and Sgr A* data. Shadow observables have been determined in the context of the regular black hole and used for obtaining the energy emission rate. The peak of the energy emission rate shifts to lower frequency for the increasing value of the parameter $\beta$.

[1]  Xin Wu,et al.  Observational signatures of Schwarzschild-MOG black holes in scalar-tensor-vector gravity: shadows and rings with different accretions , 2022, The European Physical Journal C.

[2]  Mostafizur Rahman,et al.  Regularized stable Kerr black hole: cosmic censorships, shadow and quasi-normal modes , 2022, The European Physical Journal C.

[3]  Jiliang Jing,et al.  Polarized Image of a Rotating Black Hole in Scalar–Tensor–Vector–Gravity Theory , 2022, The Astrophysical Journal.

[4]  Indrani Banerjee,et al.  Hunting extra dimensions in the shadow of Sgr A* , 2022, Physical Review D.

[5]  Indrani Banerjee,et al.  Do shadows of Sgr A* and M87* indicate black holes with a magnetic monopole charge? , 2022, 2207.06034.

[6]  Sushant G. Ghosh,et al.  Testing Rotating Regular Metrics with EHT Results of Sgr A* , 2022, The Astrophysical Journal.

[7]  Indrani Banerjee,et al.  Signatures of regular black holes from the shadow of Sgr A* and M87* , 2022, Journal of Cosmology and Astroparticle Physics.

[8]  Sushant G. Ghosh,et al.  An Upper Limit on the Charge of the Black Hole Sgr A* from EHT Observations , 2022, The Astrophysical Journal.

[9]  Yu-Dai Tsai,et al.  Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A ∗ , 2022, Classical and Quantum Gravity.

[10]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole , 2022, The Astrophysical Journal Letters.

[11]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass , 2022, The Astrophysical Journal Letters.

[12]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric , 2022, The Astrophysical Journal Letters.

[13]  A. Eichhorn,et al.  Universal signatures of singularity-resolving physics in photon rings of black holes and horizonless objects , 2022, Journal of Cosmology and Astroparticle Physics.

[14]  R. C. Bernardo,et al.  Dressed black holes in the new tensor–vector–scalar theory , 2022, General Relativity and Gravitation.

[15]  G. Perrin,et al.  Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits , 2021, Astronomy & Astrophysics.

[16]  S. Vagnozzi,et al.  Superradiance evolution of black hole shadows revisited , 2021, Physical Review D.

[17]  Farruh Atamurotov,et al.  Rotating charged black hole in 4D Einstein-Gauss–Bonnet gravity: Photon motion and its shadow , 2021, Physics of the Dark Universe.

[18]  D. Psaltis,et al.  Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry , 2021, The Astrophysical Journal.

[19]  M. Jamil,et al.  Axion-plasmon or magnetized plasma effect on an observable shadow and gravitational lensing of a Schwarzschild black hole , 2021, Physical Review D.

[20]  H. Falcke,et al.  The Nature of Black Hole Shadows , 2021, The Astrophysical Journal.

[21]  S. Rahvar,et al.  MOG cosmology without dark matter and the cosmological constant , 2021, Monthly Notices of the Royal Astronomical Society.

[22]  I. D. Martino,et al.  Orbital precession of the S2 star in Scalar-Tensor-Vector-Gravity , 2021, Monthly Notices of the Royal Astronomical Society.

[23]  Daniel C. M. Palumbo,et al.  Constraints on black-hole charges with the 2017 EHT observations of M87* , 2021, Physical Review D.

[24]  O. Tsupko,et al.  Calculating black hole shadows: Review of analytical studies , 2021, Physics Reports.

[25]  J. Moffat,et al.  Scalar–Tensor–Vector Modified Gravity in Light of the Planck 2018 Data , 2021, Universe.

[26]  Rahul Kumar,et al.  Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87* , 2021, 2103.11417.

[27]  Rajibul Shaikh,et al.  Constraining alternatives to the Kerr black hole , 2021, 2102.04299.

[28]  V. Gurzadyan,et al.  Black hole shadow to probe modified gravity , 2021, 2101.08261.

[29]  Wonwoo Lee,et al.  Shadow cast by a rotating black hole with anisotropic matter , 2021, Physical Review D.

[30]  Sh. Khlghatyan,et al.  Black hole shadow to probe modified gravity , 2021, The European Physical Journal Plus.

[31]  Rahul Kumar,et al.  Parameters estimation and strong gravitational lensing of nonsingular Kerr-Sen black holes , 2020, 2011.08023.

[32]  Jian-Bo Deng,et al.  Shadow cast by a rotating and nonlinear magnetic-charged black hole in perfect fluid dark matter , 2020, Modern Physics Letters A.

[33]  Daniel C. M. Palumbo,et al.  Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole , 2020, Physical Review Letters.

[34]  N. C. Martens,et al.  Dark matter = modified gravity? Scrutinising the spacetime–matter distinction through the modified gravity/ dark matter lens , 2020, 2009.03890.

[35]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[36]  Sushant G. Ghosh,et al.  Ergosphere and shadow of a rotating regular black hole , 2020, 2006.07570.

[37]  A. Allahyari,et al.  Black holes with scalar hair in light of the Event Horizon Telescope , 2020, Journal of Cosmology and Astroparticle Physics.

[38]  P. T. de Zeeuw,et al.  Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole , 2020, Astronomy & Astrophysics.

[39]  A. Allahyari,et al.  Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[40]  Rahul Kumar,et al.  Shadow cast and deflection of light by charged rotating regular black holes , 2019, 1912.05154.

[41]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[42]  Bing Zhang,et al.  On neutralization of charged black holes , 2019, Monthly Notices of the Royal Astronomical Society.

[43]  I. Dymnikova,et al.  Identification of a Regular Black Hole by Its Shadow , 2019, Universe.

[44]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[45]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019 .

[46]  The Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[47]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[48]  S. Vagnozzi,et al.  Hunting for extra dimensions in the shadow of M87* , 2019, Physical Review D.

[49]  C. Bambi,et al.  Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image , 2019, Physical Review D.

[50]  R. Shaikh Black hole shadow in a general rotating spacetime obtained through Newman-Janis algorithm , 2019, Physical Review D.

[51]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[52]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[53]  J. Moffat,et al.  Masses and shadows of the black holes Sagittarius A* and M87* in modified gravity , 2019, Physical Review D.

[54]  Rahul Kumar,et al.  Black Hole Parameter Estimation from Its Shadow , 2018, The Astrophysical Journal.

[55]  Abraão Jessé Capistrano de Souza Introductory Chapter: The Physics of Dark Sector , 2018, Essentials on Dark Matter.

[56]  Abraão Jessé Capistrano de Souza Essentials on Dark Matter , 2018 .

[57]  D. Psaltis Testing general relativity with the Event Horizon Telescope , 2018, General Relativity and Gravitation.

[58]  J. Moffat Regular rotating MOG dark compact object , 2018, The European Physical Journal C.

[59]  H. Falcke,et al.  The current ability to test theories of gravity with black hole shadows , 2018, Nature Astronomy.

[60]  C. Herdeiro,et al.  Shadows and strong gravitational lensing: a brief review , 2018, General Relativity and Gravitation.

[61]  N. Tsukamoto Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes , 2017, 1708.07427.

[62]  X. Ji,et al.  Current status of direct dark matter detection experiments , 2017, Nature Physics.

[63]  X. Calmet,et al.  What is modified gravity and how to differentiate it from particle dark matter? , 2017, 1702.03832.

[64]  W. Freeman,et al.  Observing---and Imaging---Active Galactic Nuclei with the Event Horizon Telescope , 2016, 1607.03034.

[65]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[66]  A. Abdujabbarov,et al.  Shadow of rotating regular black holes , 2016, 1604.03809.

[67]  J. Moffat,et al.  Black holes in modified gravity (MOG) , 2014, 1412.5424.

[68]  J. Moffat,et al.  Rotational Velocity Curves in the Milky Way as a Test of Modified Gravity , 2014, 1411.6701.

[69]  J. Moffat Scalar and Vector Field Constraints, Deflection of Light and Lensing in Modified Gravity (MOG) , 2014, 1410.2464.

[70]  J. Moffat Structure Growth and the CMB in Modified Gravity (MOG) , 2014, 1409.0853.

[71]  S. Rahvar,et al.  The MOG weak field approximation – II. Observational test of Chandra X-ray clusters , 2013, 1309.5077.

[72]  C. Bambi,et al.  Measuring the Kerr spin parameter of regular black holes from their shadow , 2013, 1309.1606.

[73]  A. Abdujabbarov,et al.  Shadow of rotating non-Kerr black hole , 2013 .

[74]  A. Abdujabbarov,et al.  Shadow of rotating Hořava-Lifshitz black hole , 2013 .

[75]  S. Rahvar,et al.  The MOG weak field approximation and observational test of galaxy rotation curves , 2013, 1306.6383.

[76]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[77]  A. Abdujabbarov,et al.  Shadow of Kerr-Taub-NUT black hole , 2012, 1212.4949.

[78]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[79]  J. Moffat,et al.  Cosmological Observations in a Modified Theory of Gravity (MOG) , 2011, 1104.2957.

[80]  J. Moffat,et al.  Black holes in an ultraviolet complete quantum gravity , 2010, 1010.0680.

[81]  S. Nojiri,et al.  Is the future universe singular: Dark matter versus modified gravity? , 2009, 0911.2781.

[82]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[83]  K. Maeda,et al.  Measurement of the Kerr Spin Parameter by Observation of a Compact Object's Shadow , 2009, 0904.3575.

[84]  S. Nojiri,et al.  Modified gravity as realistic candidate for dark energy, inflation and dark matter , 2008, 0810.1557.

[85]  S. Nojiri,et al.  Dark energy, inflation and dark matter from modified F(R) gravity , 2008, 0807.0685.

[86]  J. Moffat,et al.  Modified Gravity: Cosmology without dark matter or Einstein's cosmological constant , 2007, 0710.0364.

[87]  J. Brownstein,et al.  The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter , 2007, astro-ph/0702146.

[88]  R. Sanders,et al.  Modified Gravity Without Dark Matter , 2006, astro-ph/0601431.

[89]  J. Moffat Scalar–tensor–vector gravity theory , 2005, gr-qc/0506021.

[90]  V. Perlick Gravitational Lensing from a Spacetime Perspective , 2004, Living reviews in relativity.

[91]  G. Ellis,et al.  Schwarzschild black hole lensing , 1999, astro-ph/9904193.

[92]  E. Ay'on-Beato,et al.  Regular black hole in general relativity coupled to nonlinear electrodynamics , 1998, gr-qc/9911046.

[93]  R. Geroch What is a singularity in general relativity , 1968 .

[94]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[95]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multi-wavelength Observations, Data Processing, and Calibration , 2023, 2311.08679.

[96]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way , 2023, 2311.08680.

[97]  Sushant G. Ghosh,et al.  Constraining Kerr–like black holes from Event Horizon Telescope results of Sgr A* , 2022 .

[98]  B. A. Boom,et al.  GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses , 2020, 2004.08342.

[99]  Lefteris Papantonopoulos The Invisible Universe: Dark Matter and Dark Energy , 2008 .

[100]  J. P.,et al.  In search of "dark matter". , 1991, Science.

[101]  E. Newman,et al.  Motion and structure of singularities in general relativity , 1969 .

[102]  UvA-DARE (Digital Academic Repository) First Event Horizon Telescope , 2022 .

[103]  UvA-DARE (Digital Academic Repository) First Sagittarius A* Event Horizon Telescope Results. V Testing Astrophysical Models of the Galactic Center Black Hole , 2022 .