Iterative solvers for hybridized finite element methods
暂无分享,去创建一个
[1] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[2] J. Nitsche,et al. Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .
[3] Francisco-Javier Sayas,et al. A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .
[4] Jay Gopalakrishnan,et al. A Schwarz Preconditioner for a Hybridized Mixed Method , 2003 .
[5] J. Pasciak,et al. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .
[6] Joseph E. Pasciak,et al. THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS , 1992 .
[7] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[8] J. Pasciak,et al. Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .
[9] Bernardo Cockburn,et al. A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..
[10] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[11] Forman S. Acton,et al. Numerical methods that work , 1970 .
[12] Bo Dong,et al. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..
[13] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[14] James H. Bramble,et al. The analysis of multigrid methods , 2000 .
[15] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[18] W. Hackbusch,et al. A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .
[19] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[20] Bernardo Cockburn,et al. Error analysis of variable degree mixed methods for elliptic problems via hybridization , 2005, Math. Comput..
[21] R. S. Falk,et al. Error estimates for mixed methods , 1980 .
[22] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[23] Jayadeep Gopalakrishnan,et al. A convergent multigrid cycle for the hybridized mixed method , 2009, Numer. Linear Algebra Appl..
[24] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations , 1943 .
[25] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[26] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[27] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[28] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .