Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways

[1]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[2]  Patrick G. A. Pedrioli,et al.  Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA , 2009, Nature.

[3]  M. Roussel,et al.  E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. , 2009, Molecular cell.

[4]  H. Ploegh,et al.  A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway , 2008, Proceedings of the National Academy of Sciences.

[5]  S. Gygi,et al.  Ubiquitin-Like Protein Involved in the Proteasome Pathway of Mycobacterium tuberculosis , 2008, Science.

[6]  H. Hayashi,et al.  Thio-modification of Yeast Cytosolic tRNA Requires a Ubiquitin-related System That Resembles Bacterial Sulfur Transfer Systems* , 2008, Journal of Biological Chemistry.

[7]  Anjanabha Saha,et al.  Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation , 2008, Molecular cell.

[8]  A. Byström,et al.  A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. , 2008, RNA.

[9]  M. Peter,et al.  Function and regulation of protein neddylation , 2008, EMBO reports.

[10]  V. Schreiber,et al.  The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects' Review Series , 2008, EMBO reports.

[11]  Daniel C. Scott,et al.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation , 2008, Cell.

[12]  J. Huibregtse,et al.  The Basis for Selective E1-E2 Interactions in the ISG15 Conjugation System* , 2008, Journal of Biological Chemistry.

[13]  R. Osman,et al.  Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail , 2008, Proceedings of the National Academy of Sciences.

[14]  Hermann Schindelin,et al.  Structural Insights into E1-Catalyzed Ubiquitin Activation and Transfer to Conjugating Enzymes , 2008, Cell.

[15]  M. Roussel,et al.  Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8’s E1 , 2008, Biochemistry.

[16]  Harold E. Smith,et al.  E1 Ubiquitin-Activating Enzyme UBA-1 Plays Multiple Roles throughout C. elegans Development , 2008, PLoS genetics.

[17]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[18]  H. Schindelin,et al.  The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. , 2008, Biochemistry.

[19]  D. Willis A decade on , 2008, Journal of intellectual disabilities : JOID.

[20]  Michael M. Madden,et al.  Substrate properties of ubiquitin carboxyl-terminally derived peptide probes for protein ubiquitination. , 2008, Biochemistry.

[21]  C. Walsh,et al.  Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7. , 2008, Journal of the American Chemical Society.

[22]  B. Schulman,et al.  Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2 , 2008, Nature Structural &Molecular Biology.

[23]  Ji Luo,et al.  Cancer Proliferation Gene Discovery Through Functional Genomics , 2008, Science.

[24]  E. Hoffman,et al.  Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. , 2008, American journal of human genetics.

[25]  A. Bergmann,et al.  The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously , 2007, Development.

[26]  F. Melchior,et al.  Concepts in sumoylation: a decade on , 2007, Nature Reviews Molecular Cell Biology.

[27]  T. Mizushima,et al.  Crystal structure of Ufc1, the Ufm1-conjugating enzyme. , 2007, Biochemical and biophysical research communications.

[28]  Dean P. Jones,et al.  Commensal bacteria modulate cullin‐dependent signaling via generation of reactive oxygen species , 2007, The EMBO journal.

[29]  Yili Yang,et al.  Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. , 2007, Cancer research.

[30]  Zhijian J. Chen,et al.  E1-L2 activates both ubiquitin and FAT10. , 2007, Molecular cell.

[31]  R. Singh,et al.  UBE1L2, a Novel E1 Enzyme Specific for Ubiquitin*♦ , 2007, Journal of Biological Chemistry.

[32]  Weidong Hu,et al.  The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. , 2007, Molecular cell.

[33]  Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins. , 2007, Molecular cell.

[34]  S. Gygi,et al.  Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging , 2007, Nature.

[35]  S. Chiocca,et al.  Targeting SUMO E1 to Ubiquitin Ligases , 2007, Journal of Biological Chemistry.

[36]  R. Deshaies,et al.  A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. , 2007, Molecular biology of the cell.

[37]  F. Inagaki,et al.  The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation* , 2007, Journal of Biological Chemistry.

[38]  I. Hariharan,et al.  Mutation of the Gene Encoding the Ubiquitin Activating Enzyme Uba1 Causes Tissue Overgrowth in Drosophila , 2007, Fly.

[39]  A. Goldberg Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. , 2007, Biochemical Society transactions.

[40]  J. Holton,et al.  Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity , 2007, Nature.

[41]  S. Chiocca,et al.  TARGETING SUMO E1 TO UBIQUITIN LIGASES: A VIRAL STRATEGY TO COUNTERACT SUMOYLATION , 2007 .

[42]  P. Hanawalt,et al.  Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme , 2006, Proceedings of the National Academy of Sciences.

[43]  M. Hochstrasser,et al.  Modification of proteins by ubiquitin and ubiquitin-like proteins. , 2006, Annual review of cell and developmental biology.

[44]  A. Haas,et al.  Pleiotropic Effects of ATP·Mg2+ Binding in the Catalytic Cycle of Ubiquitin-activating Enzyme* , 2006, Journal of Biological Chemistry.

[45]  J. Wade Harper,et al.  Structural Complexity in Ubiquitin Recognition , 2006, Cell.

[46]  F. Melchior,et al.  Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. , 2006, Molecular cell.

[47]  M. Hochstrasser Lingering Mysteries of Ubiquitin-Chain Assembly , 2006, Cell.

[48]  Tadhg P Begley,et al.  Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. , 2006, Biochemistry.

[49]  Avram Hershko,et al.  The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). , 2005, Angewandte Chemie.

[50]  A. Ciechanover Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). , 2005, Angewandte Chemie.

[51]  Brian Kuhlman,et al.  E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer , 2005, Nature Structural &Molecular Biology.

[52]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[53]  B. Schulman,et al.  Structural analysis of Escherichia coli ThiF. , 2005, Journal of molecular biology.

[54]  M. Bochtler,et al.  Crystal Structure of a Fragment of Mouse Ubiquitin-activating Enzyme* , 2005, Journal of Biological Chemistry.

[55]  David Reverter,et al.  Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex , 2005, Nature.

[56]  Alexander Varshavsky,et al.  Regulated protein degradation. , 2005, Trends in biochemical sciences.

[57]  C. Lima,et al.  Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1 , 2005, The EMBO journal.

[58]  J. Holton,et al.  Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. , 2005, Molecular cell.

[59]  Aaron Ciechanover,et al.  Proteolysis: from the lysosome to ubiquitin and the proteasome , 2005, Nature Reviews Molecular Cell Biology.

[60]  D. Fushman,et al.  Polyubiquitin chains: polymeric protein signals. , 2004, Current opinion in chemical biology.

[61]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[62]  R. Hay,et al.  A mechanism for inhibiting the SUMO pathway. , 2004, Molecular cell.

[63]  M. Hochstrasser,et al.  Ubiquitin signalling: what's in a chain? , 2004, Nature Cell Biology.

[64]  R. Krug,et al.  The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein , 2004 .

[65]  David W. Miller,et al.  A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8 , 2004, Nature Structural &Molecular Biology.

[66]  Keiji Tanaka,et al.  A novel protein‐conjugating system for Ufm1, a ubiquitin‐fold modifier , 2004, The EMBO journal.

[67]  Alejandro Chavez,et al.  Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B. Schulman,et al.  Ubiquitin-like protein activation , 2004, Oncogene.

[69]  D. C. Dias,et al.  Nedd8 on cullin: building an expressway to protein destruction , 2004, Oncogene.

[70]  David W. Miller,et al.  The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. , 2003, Molecular cell.

[71]  G. Sprague,,et al.  Attachment of the Ubiquitin-Related Protein Urm1p to the Antioxidant Protein Ahp1p , 2003, Eukaryotic Cell.

[72]  M. Tatham,et al.  Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. , 2003, Biochemistry.

[73]  A. Haas,et al.  Conservation in the Mechanism of Nedd8 Activation by the Human AppBp1-Uba3 Heterodimer* , 2003, Journal of Biological Chemistry.

[74]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8 , 2003, Nature.

[75]  C. Slaughter,et al.  Identification of a Multifunctional Binding Site on Ubc9p Required for Smt3p Conjugation* , 2002, The Journal of Biological Chemistry.

[76]  H. Naganawa,et al.  Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme. , 2002, Journal of natural products.

[77]  H. Schindelin,et al.  Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex , 2001, Nature.

[78]  K. Rajagopalan,et al.  Characterization of Escherichia coli MoeB and Its Involvement in the Activation of Molybdopterin Synthase for the Biosynthesis of the Molybdenum Cofactor* , 2001, The Journal of Biological Chemistry.

[79]  C. Pickart,et al.  Distinct Functional Surface Regions on Ubiquitin* , 2001, The Journal of Biological Chemistry.

[80]  A. Dautry‐Varsat,et al.  Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor beta chain to late endocytic compartments. , 2001, Molecular biology of the cell.

[81]  M. Komatsu,et al.  The C-terminal Region of an Apg7p/Cvt2p Is Required for Homodimerization and Is Essential for Its E1 Activity and E1-E2 Complex Formation* , 2001, The Journal of Biological Chemistry.

[82]  R. Krug,et al.  Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)‐induced ubiquitin‐like ISG15 protein , 2001, The EMBO journal.

[83]  T. Ueno,et al.  The Human Homolog of Saccharomyces cerevisiae Apg7p Is a Protein-activating Enzyme for Multiple Substrates Including Human Apg12p, GATE-16, GABARAP, and MAP-LC3* , 2001, The Journal of Biological Chemistry.

[84]  L. Nicholson,et al.  Solution structure of ThiS and implications for the evolutionary roots of ubiquitin , 2001, Nature Structural Biology.

[85]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[86]  M. Hochstrasser,et al.  Evolution and function of ubiquitin-like protein-conjugation systems , 2000, Nature Cell Biology.

[87]  M. Hochstrasser,et al.  A viable ubiquitin‐activating enzyme mutant for evaluating ubiquitin system function in Saccharomyces cerevisiae , 2000, FEBS letters.

[88]  E. Yeh,et al.  Ubiquitin-like proteins: new wines in new bottles. , 2000, Gene.

[89]  R. Neve,et al.  The Amyloid Precursor Protein-binding Protein APP-BP1 Drives the Cell Cycle through the S-M Checkpoint and Causes Apoptosis in Neurons* , 2000, The Journal of Biological Chemistry.

[90]  Takeshi Noda,et al.  A Protein Conjugation System in Yeast with Homology to Biosynthetic Enzyme Reaction of Prokaryotes* , 2000, The Journal of Biological Chemistry.

[91]  N. Mizushima,et al.  Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. , 1999, Molecular biology of the cell.

[92]  E. Yeh,et al.  Identification of the Activating and Conjugating Enzymes of the NEDD8 Conjugation Pathway* , 1999, The Journal of Biological Chemistry.

[93]  R. Hay,et al.  Identification of the Enzyme Required for Activation of the Small Ubiquitin-like Protein SUMO-1* , 1999, The Journal of Biological Chemistry.

[94]  E. Yeh,et al.  Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin‐activating enzyme complex , 1999, FEBS letters.

[95]  C. Hill,et al.  Crystal Structure of the Human Ubiquitin-like Protein NEDD8 and Interactions with Ubiquitin Pathway Enzymes* , 1998, The Journal of Biological Chemistry.

[96]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[97]  S. Jentsch,et al.  A novel protein modification pathway related to the ubiquitin system , 1998, The EMBO journal.

[98]  C. Hill,et al.  Crystal Structure of the Saccharomyces cerevisiae Ubiquitin-conjugating Enzyme Rad6 at 2.6 Å Resolution* , 1998, The Journal of Biological Chemistry.

[99]  G. Blobel,et al.  The ubiquitin‐like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer , 1997, The EMBO journal.

[100]  A Perrakis,et al.  Crystal Structure of Murine/Human Ubc9 Provides Insight into the Variability of the Ubiquitin-conjugating System* , 1997, The Journal of Biological Chemistry.

[101]  A. Ciechanover,et al.  The ubiquitin conjugation system is required for ligand‐induced endocytosis and degradation of the growth hormone receptor. , 1996, The EMBO journal.

[102]  A. Ciechanover,et al.  The Ubiquitin-activating Enzyme E1 Is Phosphorylated and Localized to the Nucleus in a Cell Cycle-dependent Manner* , 1996, The Journal of Biological Chemistry.

[103]  A. Goffeau,et al.  An Essential Yeast Gene Encoding a Homolog of Ubiquitin-activating Enzyme (*) , 1995, The Journal of Biological Chemistry.

[104]  A. Ciechanover,et al.  Nuclear localization of the ubiquitin-activating enzyme, E1, is cell-cycle-dependent. , 1994, The Biochemical journal.

[105]  C. Pickart,et al.  Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). , 1994, The Journal of biological chemistry.

[106]  H. Weintraub,et al.  The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M, and G1 , 1992, Cell.

[107]  M. Sullivan,et al.  Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. , 1991, The Journal of biological chemistry.

[108]  S. Jentsch,et al.  UBA 1: an essential yeast gene encoding ubiquitin‐activating enzyme. , 1991, The EMBO journal.

[109]  A. Ciechanover,et al.  Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[110]  R. Vierstra,et al.  Cloning of ubiquitin activating enzyme from wheat and expression of a functional protein in Escherichia coli. , 1990, The Journal of biological chemistry.

[111]  K. Wilkinson,et al.  A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue. , 1990, Biochemistry.

[112]  A. Haas,et al.  Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation. , 1988, The Journal of biological chemistry.

[113]  A. Haas,et al.  The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. , 1988, The Journal of biological chemistry.

[114]  I. A. Rose,et al.  Functional heterogeneity of ubiquitin carrier proteins. , 1985, Progress in clinical and biological research.

[115]  A. Ciechanover,et al.  Mammalian cell cycle mutant defective in intracellular protein degradation and ubiquitin-protein conjugation. , 1985, Progress in clinical and biological research.

[116]  A. Ciechanover,et al.  Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85 , 1984, Cell.

[117]  I. A. Rose,et al.  Ubiquitin adenylate: structure and role in ubiquitin activation. , 1983, Biochemistry.

[118]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.

[119]  A. Ciechanover,et al.  Components of Ubiquitin-Protein Ligase System , 1983 .

[120]  A. Haas,et al.  The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. , 1982, The Journal of biological chemistry.

[121]  A. Hershko,et al.  Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. , 1982, The Journal of biological chemistry.

[122]  A. Ciechanover,et al.  "Covalent affinity" purification of ubiquitin-activating enzyme. , 1982, The Journal of biological chemistry.

[123]  A Ciechanover,et al.  Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. , 1981, Proceedings of the National Academy of Sciences of the United States of America.