A Posteriori Error Estimates of Discontinuous Galerkin Method for Nonmonotone Quasi-linear Elliptic Problems

In this paper, we propose and study the residual-based a posteriori error estimates of h-version of symmetric interior penalty discontinuous Galerkin method for solving a class of second order quasi-linear elliptic problems which are of nonmonotone type. Computable upper and lower bounds on the error measured in terms of a natural mesh-dependent energy norm and the broken H1-seminorm, respectively, are derived. Numerical experiments are also provided to illustrate the performance of the proposed estimators.

[1]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[2]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[3]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[4]  Ilaria Perugia,et al.  An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations , 2007 .

[5]  Thirupathi Gudi,et al.  Discontinuous Galerkin Methods for Quasi-Linear Elliptic Problems of Nonmonotone Type , 2007, SIAM J. Numer. Anal..

[6]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[7]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..

[8]  E. Süli,et al.  A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[11]  Adrian J. Lew,et al.  Discontinuous Galerkin methods for non‐linear elasticity , 2006 .

[12]  Paul Castillo An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method , 2005, J. Sci. Comput..

[13]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[14]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[15]  C. Bi,et al.  Discontinuous Galerkin method for monotone nonlinear elliptic problems , 2012 .

[16]  Bernardo Cockburn,et al.  An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems , 2005, J. Sci. Comput..

[17]  Doron Levy,et al.  Local discontinuous Galerkin methods for nonlinear dispersive equations , 2004 .

[18]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[19]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[20]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[21]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[22]  Benjamin Stamm,et al.  BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES' PROBLEM , 2010 .

[23]  E. Süli,et al.  Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case , 2005 .

[24]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[25]  Thirupathi Gudi,et al.  An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type , 2008, Math. Comput..

[26]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[27]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[28]  James Serrin,et al.  Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form , 1971 .

[29]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[30]  M. Feistauer,et al.  Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems , 2005 .

[31]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[32]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[33]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[34]  Kwang Y. Kim A posteriori error estimators for locally conservative methods of nonlinear elliptic problems , 2007 .

[35]  Gabriel N. Gatica,et al.  A Local Discontinuous Galerkin Method for Nonlinear Diffusion Problems with Mixed Boundary Conditions , 2004, SIAM J. Sci. Comput..

[36]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[37]  Béatrice Rivière,et al.  Discontinuous Galerkin Finite Element Approximation of Nonlinear Non-Fickian Diffusion in Viscoelastic Polymers , 2006, SIAM J. Numer. Anal..

[38]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[39]  Victor Ginting,et al.  Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems , 2011, J. Sci. Comput..

[40]  Jim Douglas,et al.  A Galerkin method for a nonlinear Dirichlet problem , 1975 .

[41]  G. Gatica,et al.  A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .

[42]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[43]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[44]  G. Gatica,et al.  A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics , 2005 .

[45]  Thirupathi Gudi,et al.  hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems , 2008, Numerische Mathematik.

[46]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[47]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[48]  Béatrice Rivière,et al.  Discontinuous Galerkin Methods for Second-Order Elliptic PDE with Low-Regularity Solutions , 2011, J. Sci. Comput..

[49]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[50]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[51]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[52]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[53]  Martin Vohralík,et al.  Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..

[54]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[55]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .