Técnicas para determinar toxicidad en aguas residuales industriales contaminadas con colorantes y pigmentos

El deterioro del medio ambiente es un tema de gran preocupación actual y que ha impulsado el desarrollo de investigaciones para remediar los efectos nocivos causados por el hombre con su actividad industrial desbordada. Los cuerpos de agua se están viendo afectados por los vertimientos contaminantes de las industrias que utilizan colorantes y pigmentos, ya que es una alteración a los sistemas acuáticos por la interferencia del paso de la luz y las partículas potencialmente tóxicas que tienen efectos no solo sobre los organismos acuáticos sino también posibles efectos indirectos en la salud humana. Esta investigación se desarrolla para conocer y elegir las técnicas de medición de toxicidad más adecuadas para evaluar el impacto de estos efluentes cargados de colorantes y pigmentos para su posterior aplicación a muestras de agua residual reales. Se realiza una revisión bibliográfica de diferentes técnicas para la evaluación de toxicidad acuática y se resalta la importancia de la aplicación de dichas pruebas en la evaluación de las ventajas y la eficiencia de los tratamientos de remoción de color.

[1]  Test No. 453: Combined Chronic Toxicity/Carcinogenicity Studies , 2018, OECD Guidelines for the Testing of Chemicals, Section 4.

[2]  Niraj R. Rane,et al.  Enhanced phytotransformation of Navy Blue RX dye by Petunia grandiflora Juss. with augmentation of rhizospheric Bacillus pumilus strain PgJ and subsequent toxicity analysis. , 2013, Bioresource technology.

[3]  J. Jadhav,et al.  Evaluation of phytoremediation potential of Tagetes patula L. for the degradation of textile dye Reactive Blue 160 and assessment of the toxicity of degraded metabolites by cytogenotoxicity. , 2013, Chemosphere.

[4]  M. Wang,et al.  Toxicity assessment on three direct dyes (D-BLL, D-GLN, D-3RNL) using oxidative stress bioassay and quantum parameter calculation. , 2012, Ecotoxicology and environmental safety.

[5]  D. Sponza,et al.  Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems. , 2012, Water science and technology : a journal of the International Association on Water Pollution Research.

[6]  J. Doležalová,et al.  A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. , 2012, Environmental toxicology and pharmacology.

[7]  T. Chakrabarti,et al.  Azo dyes: past, present and the future , 2011 .

[8]  D. P. Oliveira,et al.  The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. , 2011, Journal of hazardous materials.

[9]  T. Palvannan,et al.  Aqueous state laccase thermostabilization using carbohydrate polymers: Effect on toxicity assessment of azo dye , 2011 .

[10]  G. Varese,et al.  Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. , 2011, Ecotoxicology and environmental safety.

[11]  S. Funar-Timofei,et al.  Hydractinia echinata test system. II. SAR toxicity study of some anilide derivatives of Naphthol-AS type. , 2011, Chemosphere.

[12]  D. Kalyani,et al.  Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. , 2011, Journal of hazardous materials.

[13]  G. Dave,et al.  Comparative toxicity of leachates from 52 textiles to Daphnia magna. , 2010, Ecotoxicology and environmental safety.

[14]  Shih-Hsien Chang,et al.  Treatment and toxicity evaluation of methylene blue using electrochemical oxidation, fly ash adsorption and combined electrochemical oxidation-fly ash adsorption. , 2010, Journal of environmental management.

[15]  V. Teplova,et al.  Quick assessment of cytotoxins effect on Daphnia magna using in vivo fluorescence microscopy , 2010, Environmental toxicology and chemistry.

[16]  A. Kahru,et al.  From ecotoxicology to nanoecotoxicology. , 2010, Toxicology.

[17]  Robert Landsiedel,et al.  Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. , 2009, Chemosphere.

[18]  Suhas,et al.  Application of low-cost adsorbents for dye removal--a review. , 2009, Journal of environmental management.

[19]  A. Immich,et al.  Removal of Remazol Blue RR dye from aqueous solutions with Neem leaves and evaluation of their acute toxicity with Daphnia magna. , 2009, Journal of hazardous materials.

[20]  K. Kasemets,et al.  Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, The Science of the total environment.

[21]  S. Vinitnantharat,et al.  Toxicity of reactive red 141 and basic red 14 to algae and waterfleas. , 2008, Water Science and Technology.

[22]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[23]  Magdeline Laba,et al.  Aggregation and Toxicology of Titanium Dioxide Nanoparticles , 2008, Environmental health perspectives.

[24]  Y. Verma Toxicity Evaluation of Effluents from Dye and Dye Intermediate Producing Industries Using Daphnia Bioassay , 2007 .

[25]  P. Sharma,et al.  A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. , 2007, Chemosphere.

[26]  K. Knauer,et al.  Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action. , 2007, Chemosphere.

[27]  D. Sponza Toxicity studies in a chemical dye production industry in Turkey. , 2006, Journal of hazardous materials.

[28]  N. Lima,et al.  Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. , 2006, Chemosphere.

[29]  M. Ozmen,et al.  Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis , 2012, Environmental Science and Pollution Research.

[30]  H. Freeman,et al.  Aquatic toxicity evaluation of new direct dyes to the Daphnia magna , 2007 .