A 0.045- to 2.5-GHz Frequency Synthesizer With TDC-Based AFC and Phase Switching Multi-Modulus Divider

A 0.045- to 2.5- GHz wideband frequency synthesizer (FS) employing time-to-digital converter (TDC) based automatic frequency calibration (AFC) method and phase switching (PS) multi-modulus divider (MMD) is presented in this paper. The traditional counter-based AFC method takes several reference cycles to calculate the instantaneous voltage-controlled oscillator (VCO) frequency, while the proposed TDC-based technique consumes only 2 cycles. In order to suppress the quantization noise caused by the sigma-delta modulator (SDM) in the MMD, the loop division step is reduced from 2 to 0.5 by adopting the PS technique. The FS is designed and implemented using TSMC 180nm RF CMOS process and provides the phase noise performance of −99.5 / −123.5 dBc/Hz at 10kHz/1MHz offsets under 2.4 GHz carrier frequency. The AFC time measurement results for a 6-bit cap-array are 1.25-, 2.5- and 5-<inline-formula> <tex-math notation="LaTeX">$\mathrm {\mu s}$ </tex-math></inline-formula> when employing 48-, 24- and 12-MHz reference frequencies respectively. The chip area including pads and I/Os is 2.31 mm<inline-formula> <tex-math notation="LaTeX">$^{\mathbf {2}}$ </tex-math></inline-formula> and the total power consumption is 108 mW.

[1]  Ning Li,et al.  A 0.4–6-GHz Frequency Synthesizer Using Dual-Mode VCO for Software-Defined Radio , 2013, IEEE Transactions on Microwave Theory and Techniques.

[2]  SeongHwan Cho,et al.  A 2.4 GHz Fractional-N Frequency Synthesizer With High-OSR ΔΣ Modulator and Nested PLL , 2012, IEEE Journal of Solid-State Circuits.

[3]  Mitchell D. Trott,et al.  A modeling approach for ΣΔ fractional-N frequency synthesizers allowing straightforward noise analysis , 2002, IEEE J. Solid State Circuits.

[4]  Un-Ku Moon,et al.  A CMOS self-calibrating frequency synthesizer , 2000, IEEE Journal of Solid-State Circuits.

[5]  Christoph Scheytt,et al.  An Integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz Frequency Synthesizer for Software-Defined Radio Applications , 2009, IEEE Journal of Solid-State Circuits.

[6]  Nanjian Wu,et al.  An 18–23 GHz 57.4-fs RMS Jitter −253.5-dB FoM Sub-Harmonically Injection-Locked All-Digital PLL With Single-Ended Injection Technique and ILFD Aided Adaptive Injection Timing Alignment Technique , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Jian Liu,et al.  A Fast Auto-Frequency Calibration Technique for Wideband PLL with Wide Reference Frequency Range , 2018, 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[8]  Ian Galton,et al.  Quantization Noise Cancellation for FDC-Based Fractional-$N$ PLLs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Ahmed Elkholy,et al.  A 3.7 mW Low-Noise Wide-Bandwidth 4.5 GHz Digital Fractional-N PLL Using Time Amplifier-Based TDC , 2015, IEEE Journal of Solid-State Circuits.

[10]  Byeong-Ha Park,et al.  A /spl Sigma/-/spl Delta/ fractional-N frequency synthesizer using a wideband integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[11]  Behzad Razavi A Modeling Approach for ¿¿ FractionalN Frequency Synthesizers Allowing Straightforward Noise Analysis , 2003 .

[12]  Peter R. Kinget,et al.  A Single-Chip 125-MHz to 32-GHz Signal Source in 0.18-$\mu$m SiGe BiCMOS , 2011, IEEE Journal of Solid-State Circuits.

[13]  Ralf Wunderlich,et al.  A Multi-Frequency Multi-Standard Wideband Fractional-$ { N}$ PLL With Adaptive Phase-Noise Cancellation for Low-Power Short-Range Standards , 2016, IEEE Transactions on Microwave Theory and Techniques.

[14]  Changsik Yoo,et al.  A Fast automatic frequency calibration (AFC) scheme for phase-locked loop (PLL) frequency synthesizer , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  Peter R. Kinget,et al.  A 5.3GHz programmable divider for HiPerLAN in 0.25µm CMOS , 1999 .

[16]  Xuecheng Zou,et al.  A 0.045- to 2.5- GHz Frequency Synthesizer with TDC-based AFC and Phase Switching Multi-Modulus Divider , 2019, 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS).

[17]  Alexander V. Rylyakov,et al.  A 28 GHz Hybrid PLL in 32 nm SOI CMOS , 2014, IEEE Journal of Solid-State Circuits.

[18]  Howard C. Luong,et al.  A 0.05- to 10-GHz, 19- to 22-GHz, and 38- to 44-GHz Frequency Synthesizer for Software-Defined Radios in 0.13- $\mu\mbox{m}$ CMOS Process , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Visvesh Sathe,et al.  A 1–2 GHz Computational-Locking ADPLL With Sub-20-Cycle Locktime Across PVT Variation , 2019, IEEE Journal of Solid-State Circuits.

[20]  Xueyi Yu,et al.  A Fractional- $N$ PLL With Space–Time Averaging for Quantization Noise Reduction , 2020, IEEE Journal of Solid-State Circuits.

[21]  Kefeng Zhang,et al.  A 0.03- to 3.6-GHz Frequency Synthesizer With Self-Biased VCO and Quadrature-Input Quadrature-Output Frequency Divider , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Zhihua Wang,et al.  An FIR-Embedded Noise Filtering Method for $\Delta \Sigma$ Fractional-N PLL Clock Generators , 2009, IEEE Journal of Solid-State Circuits.

[23]  Tzyy-Sheng Horng,et al.  Enhancement of Frequency Synthesizer Operating Range Using a Novel Frequency-Offset Technique for LTE-A and CR Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[24]  Nan Sun,et al.  A 2.4-GHz ΔΣ Fractional-N Synthesizer with Space-Time Averaging for Noise Reduction , 2019, 2019 IEEE Custom Integrated Circuits Conference (CICC).

[25]  Jing Jin,et al.  Quantization Noise Suppression in Fractional-$N$ PLLs Utilizing Glitch-Free Phase Switching Multi-Modulus Frequency Divider , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Byungsub Kim,et al.  A FIR-Embedded Phase Interpolator Based Noise Filtering for Wide-Bandwidth Fractional-N PLL , 2013, IEEE Journal of Solid-State Circuits.

[27]  Byeong-Ha Park,et al.  A /spl Sigma/-/spl Delta/ fractional-N frequency synthesizer using a wide-band integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications , 2004 .

[28]  Roc Berenguer,et al.  An 802.11 a/b/g/n digital fractional-N PLL with automatic TDC linearity calibration for spur cancellation , 2016, RFIC 2016.

[29]  M. Ismail,et al.  CMOS PLL calibration techniques , 2004, IEEE Circuits and Devices Magazine.

[30]  Poras T. Balsara,et al.  All-digital frequency synthesizer in deep-submicron CMOS , 2006 .

[31]  Ning Li,et al.  A time-to-digital converter based AFC for wideband frequency synthesizer , 2014 .

[32]  Roc Berenguer,et al.  An 802.11 a/b/g/n digital fractional-N PLL with automatic TDC linearity calibration for spur cancellation , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[33]  Wei Li,et al.  A Frequency Synthesizer With Optimally Coupled QVCO and Harmonic-Rejection SSBmixer for Multi-Standard Wireless Receiver , 2011, IEEE Journal of Solid-State Circuits.

[34]  Kenichi Okada,et al.  A Compact and Low-Power Fractionally Injection-Locked Quadrature Frequency Synthesizer Using a Self-Synchronized Gating Injection Technique for Software-Defined Radios , 2014, IEEE Journal of Solid-State Circuits.

[35]  Tsung-Hsien Lin,et al.  An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL , 2007, IEEE Journal of Solid-State Circuits.

[36]  Po-Chiun Huang,et al.  A Quantization Error Minimization Method Using DDS-DAC for Wideband Fractional-N Frequency Synthesizer , 2010, IEEE Journal of Solid-State Circuits.