Non-parametric Bayesian estimation of apparent diffusion coefficient from diffusion-weighted magnetic resonance imaging data
暂无分享,去创建一个
Masoom A. Haider | Alexander Wong | Andrew Cameron | Jeffrey Glaister | M. Haider | A. Wong | A. Cameron | J. Glaister
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] A. Jemal,et al. Global Cancer Statistics , 2011 .
[3] Baba C. Vemuri,et al. Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from High Angular Resolution DWI , 2004, CVPR 2004.
[4] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[5] M. Orton,et al. Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors , 2009, Magnetic resonance in medicine.
[6] Simon Walker-Samuel,et al. Improving apparent diffusion coefficient estimates and elucidating tumor heterogeneity using Bayesian adaptive smoothing , 2011, Magnetic resonance in medicine.
[7] Masoom A Haider,et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. , 2007, AJR. American journal of roentgenology.
[8] J Leinonen,et al. Prostate-specific antigen. , 1999, Seminars in cancer biology.
[9] A. Jemal,et al. Cancer Statistics, 2008 , 2008, CA: a cancer journal for clinicians.
[10] A. Evans,et al. Prostate cancer detection with multi‐parametric MRI: Logistic regression analysis of quantitative T2, diffusion‐weighted imaging, and dynamic contrast‐enhanced MRI , 2009, Journal of magnetic resonance imaging : JMRI.