Parametric-surface adaptive tessellation based on degree reduction

Parametric-surface tessellation is one of the most important algorithms for CAGD applications. This paper presents a new parametric-surface tessellation method based on degree reduction: (1) a given parametric surface (or NURBS surface) of degrees (p; q) is decomposed into a set of Bezier surfaces, (2) the Bezier surfaces are converted into a set of bilinear surfaces by applying consecutive stepwise degree reduction processes combined with adaptive subdivision—in each degree reduction step, a Bezier surface is adaptively subdivided until the approximation error from degree reduction is smaller than the corresponding step tolerance, (3) the bilinear surfaces are converted into a triangular net. The proposed method guarantees the resulting piecewise-planar approximant to deviate from the original parametric surface within a pre-defined tolerance, and to form a ‘‘topologically’’ water-tight triangular net. r 2002 Elsevier Science Ltd. All rights reserved.

[1]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[2]  Matthias Eck,et al.  Least squares degree reduction of Bézier curves , 1995, Comput. Aided Des..

[3]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[4]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Les A. Piegl,et al.  Algorithm for degree reduction of B-spline curves , 1995, Comput. Aided Des..

[6]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[7]  J. Lane,et al.  A generalized scan line algorithm for the computer display of parametrically defined surfaces , 1979 .

[8]  A. Robin Forrest,et al.  Interactive interpolation and approximation by Bézier polynomials , 1990, Comput. Aided Des..

[9]  Wendelin L. F. Degen,et al.  Best Approximations of Parametric Curves by Splines , 1992, Geometric Modelling.

[10]  A. J. Worsey,et al.  Degree reduction of Be´zier curves , 1988 .

[11]  Robert B. Jerard,et al.  Comparison of discretization algorithms for surfaces with application to numerically controlled machining , 1997, Comput. Aided Des..

[12]  Michael A. Lachance,et al.  Chebyshev economization for parametric surfaces , 1988, Comput. Aided Geom. Des..

[13]  Les A. Piegl,et al.  Symbolic operators for NURBS , 1997, Comput. Aided Des..

[14]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[15]  Les A. Piegl,et al.  Tessellating trimmed surfaces , 1995, Comput. Aided Des..

[16]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[17]  Eberhard Eisele Chebyshev approximation of plane curves by splines , 1994 .

[18]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[19]  Gershon Elber Error bounded piecewise linear approximation of freeform surfaces , 1996, Comput. Aided Des..

[20]  Matthias Eck,et al.  Degree reduction of Bézier curves , 1993, Comput. Aided Geom. Des..

[21]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design II , 1992 .