eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates

[1]  Supratik Mukhopadhyay,et al.  Break Down in Order To Build Up: Decomposing Small Molecules for Fragment-Based Drug Design with eMolFrag , 2017, J. Chem. Inf. Model..

[2]  Shuxing Zhang,et al.  Computational polypharmacology: a new paradigm for drug discovery , 2017, Expert opinion on drug discovery.

[3]  R. W. Hansen,et al.  Innovation in the pharmaceutical industry: New estimates of R&D costs. , 2016, Journal of health economics.

[4]  L. Forrest,et al.  Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter , 2016, Scientific Reports.

[5]  Supratik Mukhopadhyay,et al.  A graph-based approach to construct target-focused libraries for virtual screening , 2016, Journal of Cheminformatics.

[6]  A. Cavalli,et al.  Role of Molecular Dynamics and Related Methods in Drug Discovery. , 2016, Journal of medicinal chemistry.

[7]  Günter Klambauer,et al.  DeepTox: Toxicity Prediction using Deep Learning , 2016, Front. Environ. Sci..

[8]  Vladimir B Bajic,et al.  In silico toxicology: computational methods for the prediction of chemical toxicity , 2016, Wiley interdisciplinary reviews. Computational molecular science.

[9]  M. Akhter,et al.  Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. , 2015, European journal of medicinal chemistry.

[10]  Diogo Santos-Martins,et al.  Receptor-based virtual screening protocol for drug discovery. , 2015, Archives of biochemistry and biophysics.

[11]  Florent Chevillard,et al.  SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability , 2015, J. Chem. Inf. Model..

[12]  Alexander Tropsha,et al.  Pred‐hERG: A Novel web‐Accessible Computational Tool for Predicting Cardiac Toxicity , 2015, Molecular informatics.

[13]  J. T. Njardarson,et al.  Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. , 2014, Journal of medicinal chemistry.

[14]  Che-Lun Hung,et al.  Computational Approaches for Drug Discovery , 2014, Drug development research.

[15]  Mathias Dunkel,et al.  ProTox: a web server for the in silico prediction of rodent oral toxicity , 2014, Nucleic Acids Res..

[16]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[17]  Xiao Li,et al.  In Silico Prediction of Chemical Acute Oral Toxicity Using Multi-Classification Methods , 2014, J. Chem. Inf. Model..

[18]  G. Sandford,et al.  Targeted Fluorination of a Nonsteroidal Anti‐inflammatory Drug to Prolong Metabolic Half‐Life , 2014, ChemMedChem.

[19]  Xavier Barril,et al.  rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids , 2014, PLoS Comput. Biol..

[20]  Hong Liu,et al.  Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). , 2014, Chemical reviews.

[21]  Richard D. Taylor,et al.  Rings in drugs. , 2014, Journal of medicinal chemistry.

[22]  Edward W. Lowe,et al.  Computational Methods in Drug Discovery , 2014, Pharmacological Reviews.

[23]  Noriyuki Furuichi,et al.  Fluorine Scanning by Nonselective Fluorination: Enhancing Raf/MEK Inhibition while Keeping Physicochemical Properties. , 2013, ACS medicinal chemistry letters.

[24]  Carolina H Andrade,et al.  Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? , 2013, Current topics in medicinal chemistry.

[25]  Lirong Chen,et al.  Use of Natural Products as Chemical Library for Drug Discovery and Network Pharmacology , 2013, PloS one.

[26]  Adriano D Andricopulo,et al.  Development of a natural products database from the biodiversity of Brazil. , 2013, Journal of natural products.

[27]  Tae-Hee Kim,et al.  Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors , 2012, Journal of cellular and molecular medicine.

[28]  Jian-Guo Jiang,et al.  Typical toxic components in traditional Chinese medicine , 2012, Expert opinion on drug safety.

[29]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[30]  Youyong Li,et al.  ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. , 2012, Molecular pharmaceutics.

[31]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[32]  Andreas Zell,et al.  Interpreting linear support vector machine models with heat map molecule coloring , 2011, J. Cheminformatics.

[33]  Alexander D. MacKerell,et al.  Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. , 2011, Current computer-aided drug design.

[34]  Calvin Yu-Chian Chen,et al.  TCM Database@Taiwan: The World's Largest Traditional Chinese Medicine Database for Drug Screening In Silico , 2011, PloS one.

[35]  Sheng-Yong Yang,et al.  Pharmacophore modeling and applications in drug discovery: challenges and recent advances. , 2010, Drug discovery today.

[36]  Charles C. Persinger,et al.  How to improve R&D productivity: the pharmaceutical industry's grand challenge , 2010, Nature Reviews Drug Discovery.

[37]  Nam Doo Kim,et al.  Pharmacophore-based virtual screening: a review of recent applications , 2010, Expert opinion on drug discovery.

[38]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[39]  C. White,et al.  Prasugrel: A Critical Comparison with Clopidogrel , 2009, Pharmacotherapy.

[40]  David S. Wishart,et al.  T3DB: a comprehensively annotated database of common toxins and their targets , 2009, Nucleic Acids Res..

[41]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[42]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[43]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[44]  Geoffrey E. Hinton Deep belief networks , 2009, Scholarpedia.

[45]  Lupei Du,et al.  The interactions between hERG potassium channel and blockers. , 2009, Current topics in medicinal chemistry.

[46]  Ulrike Schmidt,et al.  SuperToxic: a comprehensive database of toxic compounds , 2008, Nucleic Acids Res..

[47]  S. Purser,et al.  Fluorine in medicinal chemistry. , 2008, Chemical Society reviews.

[48]  F. Borsini,et al.  Pharmacology of flibanserin. , 2006, CNS drug reviews.

[49]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[50]  M. Sanguinetti,et al.  hERG potassium channels and cardiac arrhythmia , 2006, Nature.

[51]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[52]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[53]  M. Rarey,et al.  FlexX‐Scan: Fast, structure‐based virtual screening , 2004, Proteins.

[54]  Martin Stahl,et al.  Fluorine in Medicinal Chemistry , 2004, Chembiochem : a European journal of chemical biology.

[55]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[56]  C. Chuaqui,et al.  Successful shape-Based virtual screening: The discovery of a potent inhibitor of the type I TGFβ receptor kinase (TβRI) , 2003 .

[57]  A. Anderson The process of structure-based drug design. , 2003, Chemistry & biology.

[58]  M. Vieth,et al.  Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. , 2003, Journal of medicinal chemistry.

[59]  W. Tong,et al.  Quantitative structure‐activity relationship methods: Perspectives on drug discovery and toxicology , 2003, Environmental toxicology and chemistry.

[60]  Tingjun Hou,et al.  ADME evaluation in drug discovery , 2002, Journal of molecular modeling.

[61]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[62]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[63]  Jeremy D. Cohen,et al.  Remifentanil , 2001, Reactions Weekly.

[64]  Johannes H. Voigt,et al.  Comparison of the NCI Open Database with Seven Large Chemical Structural Databases , 2001, J. Chem. Inf. Comput. Sci..

[65]  E. Zeiger,et al.  The Ames Salmonella/microsome mutagenicity assay. , 2000, Mutation research.

[66]  B. Ames,et al.  What do animal cancer tests tell us about human cancer risk?: Overview of analyses of the carcinogenic potency database. , 1998, Drug metabolism reviews.

[67]  H. Davis,et al.  In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. , 1997, The Journal of pharmacology and experimental therapeutics.

[68]  E. Zeiger,et al.  Handbook of Carcinogenic Potency and Genotoxicity Databases , 1996 .

[69]  H. Diener,et al.  European Stroke Prevention Study 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke 1 1 ESPS-2 Writing Committee , 1996, Journal of the Neurological Sciences.

[70]  P Wexler,et al.  TOXNET: the National Library of Medicine's toxicology database. , 1995, American family physician.

[71]  C. A. Glasbey,et al.  Discriminant Analysis and Statistical Pattern Recognition.@@@Fundamentals of Pattern Recognition. , 1994 .

[72]  M. Laakso,et al.  The European Stroke Prevention Study , 1991, Neurology.

[73]  M. Ondetti,et al.  History of the Design of Captopril and Related Inhibitors of Angiotensin Converting Enzyme , 1991, Hypertension.

[74]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[75]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[77]  R. Dinapoli,et al.  3-O-Methyldopa, L-dopa, and trihexyphenidyl in the treatment of Parkinson's disease. , 1973, Mayo Clinic proceedings.

[78]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[79]  R. Vardanyan Classes of Piperidine-Based Drugs , 2018 .

[80]  Jin-Tai Yu,et al.  Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. , 2014, Journal of Alzheimer's disease : JAD.

[81]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[82]  G. Morris,et al.  Molecular docking. , 2008, Methods in molecular biology.

[83]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[84]  Richard L. Smith,et al.  PREDICTIVE INFERENCE , 2004 .

[85]  Scott Bowes,et al.  Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI). , 2003, Bioorganic & medicinal chemistry letters.

[86]  Jeffrey G. Mandell,et al.  Fast Molecular Docking Methods , 1998 .

[87]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[88]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[89]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.