Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic-Inorganic Perovskites in Light-Emitting Diodes.

The use of hybrid organic-inorganic perovskites in optoelectronic applications are attracting an interest because of their outstanding characteristics, which enable a remarkable enhancement of device efficiency. However, solution-processed perovskite crystals unavoidably contain defect sites that cause hysteresis in perovskite solar cells (PeSCs) and blinking in perovskite light-emitting diodes (PeLEDs). Here, we report significant beneficial effects using a new treatment based on amine-based passivating materials (APMs) to passivate the defect sites of methylammonium lead tribromide (MAPbBr3) through coordinate bonding between the nitrogen atoms and undercoordinated lead ions. This treatment greatly enhanced the PeLED's efficiency, with an external quantum efficiency (EQE) of 6.2%, enhanced photoluminescence (PL), a lower threshold for amplified spontaneous emission (ASE), a longer PL lifetime, and enhanced device stability. Using confocal microscopy, we observed the cessation of PL blinking in perovskite films treated with ethylenediamine (EDA) due to passivation of the defect sites in the MAPbBr3.

[1]  Lin-Wang Wang,et al.  Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod , 2011, Science.

[2]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[3]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[4]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[5]  H. Wan,et al.  A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties. , 2013, Physical chemistry chemical physics : PCCP.

[6]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[7]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[8]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[9]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[10]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[11]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[12]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[13]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[14]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[15]  T. Tachikawa,et al.  Surface Charge Trapping in Organolead Halide Perovskites Explored by Single-Particle Photoluminescence Imaging , 2015 .

[16]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[17]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[18]  Kaibo Zheng,et al.  Giant photoluminescence blinking of perovskite nanocrystals reveals single-trap control of luminescence. , 2015, Nano letters.

[19]  Chunfeng Zhang,et al.  Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters. , 2015, ACS nano.

[20]  Aron Walsh,et al.  The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[21]  Weiqi Wang,et al.  Low cost visible light driven plasmonic Ag–AgBr/BiVO4 system: fabrication and application as an efficient photocatalyst , 2015 .

[22]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[23]  Martin A. Green,et al.  Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. , 2015, Nano letters.

[24]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[25]  G. Cui,et al.  Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. , 2015, Angewandte Chemie.

[26]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[27]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[28]  Shaojun Guo,et al.  Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. , 2015, ACS nano.

[29]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[30]  Meicheng Li,et al.  Degradation of organometallic perovskite solar cells induced by trap states , 2016 .

[31]  Tomas Edvinsson,et al.  Frustrated Lewis pair-mediated recrystallization of CH3NH3PbI3 for improved optoelectronic quality and high voltage planar perovskite solar cells , 2016 .

[32]  K. Ho,et al.  Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives , 2016 .

[33]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[34]  I. Han,et al.  Improving Performance and Stability of Flexible Planar‐Heterojunction Perovskite Solar Cells Using Polymeric Hole‐Transport Material , 2016 .

[35]  H. Snaith,et al.  Light-induced annihilation of Frenkel defects in organo-lead halide perovskites , 2016 .

[36]  Feng Gao,et al.  Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications , 2016 .

[37]  B. Lee,et al.  High-performance perovskite light-emitting diodes via morphological control of perovskite films. , 2016, Nanoscale.

[38]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[39]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[40]  T. Wen,et al.  NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite‐Based Light‐Emitting Diodes , 2016, Advanced materials.

[41]  N. Park,et al.  Material and Device Stability in Perovskite Solar Cells , 2016 .

[42]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[43]  N. Zhao,et al.  Native Defect‐Induced Hysteresis Behavior in Organolead Iodide Perovskite Solar Cells , 2016 .

[44]  B. Jiang,et al.  Hot spot assisted blinking suppression of CdSe quantum dots , 2016 .

[45]  Wei Geng,et al.  Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High‐Efficiency and Air‐Stable Photovoltaic Cells , 2016, Advanced materials.

[46]  A. Samanta,et al.  Fluorescence Blinking and Photoactivation of All-Inorganic Perovskite Nanocrystals CsPbBr3 and CsPbBr2I. , 2016, The journal of physical chemistry letters.

[47]  H. Grande,et al.  Electron Transport Layer-Free Solar Cells Based on Perovskite-Fullerene Blend Films with Enhanced Performance and Stability. , 2016, ChemSusChem.

[48]  A. Jen,et al.  Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer , 2016, Advanced science.

[49]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[50]  Barry P Rand,et al.  Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites , 2017, Nature Photonics.