The convex Positivstellensatz in a free algebra

Abstract Given a monic linear pencil L in g variables, let P L = ( P L ( n ) ) n ∈ N where P L ( n ) : = { X ∈ S n g ∣ L ( X ) ⪰ 0 } , and S n g is the set of g -tuples of symmetric n × n matrices. Because L is a monic linear pencil, each P L ( n ) is convex with interior, and conversely it is known that convex bounded noncommutative semialgebraic sets with interior are all of the form P L . The main result of this paper establishes a perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set. Namely, a noncommutative matrix-valued polynomial p is positive semidefinite on P L if and only if it has a weighted sum of squares representation with optimal degree bounds: p = s ∗ s + ∑ j finite f j ∗ L f j , where s , f j are matrices of noncommutative polynomials of degree no greater than deg ( p ) 2 . This noncommutative result contrasts sharply with the commutative setting, where there is no control on the degrees of s , f j and assuming only p nonnegative, as opposed to p strictly positive, yields a clean Positivstellensatz so seldom that such cases are noteworthy.

[1]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[2]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[3]  J. Helton,et al.  Convexity and Semidefinite Programming in Dimension-Free Matrix Unknowns , 2012 .

[4]  J. William Helton,et al.  The matricial relaxation of a linear matrix inequality , 2010, Math. Program..

[5]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[6]  Scott McCullough Factorization of operator-valued polynomials in several non-commuting variables☆ , 2001 .

[7]  J. Helton,et al.  Strong majorization in a free ✱-algebra , 2007 .

[8]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[9]  Aljavz Zalar A Note on a Matrix Version of the Farkas Lemma , 2010 .

[10]  Louis Rowen,et al.  Polynomial identities in ring theory , 1980 .

[11]  J. W. Helton,et al.  A positivstellensatz for non-commutative polynomials , 2004 .

[12]  David P. Blecher,et al.  Operator Algebras and Their Modules: An Operator Space Approach , 2005 .

[13]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[14]  J. William Helton,et al.  Convex Noncommutative Polynomials Have Degree Two or Less , 2004, SIAM J. Matrix Anal. Appl..

[15]  Stephanie Wehner,et al.  The Quantum Moment Problem and Bounds on Entangled Multi-prover Games , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[16]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[17]  C. Procesi Rings with polynomial identities , 1973 .

[18]  J. Helton “Positive” noncommutative polynomials are sums of squares , 2002 .

[19]  Claus Scheiderer,et al.  Positivity and sums of squares: A guide to recent results , 2009 .

[20]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[21]  S. Popovych Positivstellensatz and flat functionals on path ∗-algebras , 2009, 0904.0971.

[22]  J. William Helton,et al.  M ar 2 01 0 EVERY FREE CONVEX BASIC SEMI-ALGEBRAIC SET HAS AN LMI REPRESENTATION , 2010 .

[23]  Igor Klep,et al.  NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials , 2011, Optim. Methods Softw..

[24]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[25]  Jonathan R. Partington,et al.  Linear algebra in action (Graduate Studies in Mathematics 78) , 2008 .

[26]  Harry Dym,et al.  Linear Algebra in Action , 2006, Graduate Studies in Mathematics.

[27]  Igor Klep,et al.  Infeasibility certificates for linear matrix inequalities , 2011 .

[28]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[29]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[30]  M. Marshall Positive polynomials and sums of squares , 2008 .

[31]  R. Curto,et al.  Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .

[32]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .

[33]  Igor Klep,et al.  A Nichtnegativstellensatz for polynomials in noncommuting variables , 2007 .