LinearDragger: a linear selector for one-finger target acquisition

Touch input is increasingly popular nowadays. The human finger has considerably large fingertip size and finger input is imprecise. Acquiring small targets on a touch screen is still a challenging task. In this extended abstract, we present the LinearDragger, a new and integrated one-finger target acquisition technique for small and clustered targets. It allows users to select targets in dense clustered groups easily with a single touch-drag-release operation and maps the 2D selection problem into a more precise 1D selection problem, which is independent of the target distribution. Besides, it also avoids finger occlusion and does not create visual distraction. LinearDragger is particularly suitable for applications with dense targets and rich visual elements.

[1]  Ben Shneiderman,et al.  High Precision Touchscreens: Design Strategies and Comparisons with a Mouse , 1991, Int. J. Man Mach. Stud..

[2]  Tomer Moscovich,et al.  Contact area interaction with sliding widgets , 2009, UIST '09.

[3]  Steven K. Feiner,et al.  Rubbing and tapping for precise and rapid selection on touch-screen displays , 2008, CHI.

[4]  Patrick Baudisch,et al.  Starburst: a target expansion algorithm for non-uniform target distributions , 2008, AVI '08.

[5]  B. Shneiderman,et al.  Improving the accuracy of touch screens: an experimental evaluation of three strategies , 1988, CHI '88.

[6]  Benjamin B. Bederson,et al.  ThumbSpace: Generalized One-Handed Input for Touchscreen-Based Mobile Devices , 2007, INTERACT.

[7]  Maneesh Agrawala,et al.  FingerGlass: efficient multiscale interaction on multitouch screens , 2011, CHI.

[8]  Shumin Zhai,et al.  High precision touch screen interaction , 2003, CHI '03.

[9]  Jacob O. Wobbrock,et al.  Enhanced area cursors: reducing fine pointing demands for people with motor impairments , 2010, UIST.

[10]  Daniel Vogel,et al.  Shift: a technique for operating pen-based interfaces using touch , 2007, CHI.

[11]  Doug A. Bowman,et al.  Rapid and accurate 3D selection by progressive refinement , 2011, 2011 IEEE Symposium on 3D User Interfaces (3DUI).

[12]  Jean-Daniel Fekete,et al.  Excentric labeling: dynamic neighborhood labeling for data visualization , 1999, CHI '99.

[13]  Shumin Zhai,et al.  FFitts law: modeling finger touch with fitts' law , 2013, CHI.

[14]  Renaud Blanch,et al.  Semantic pointing: improving target acquisition with control-display ratio adaptation , 2004, CHI.

[15]  Olivier Chapuis,et al.  DynaSpot: speed-dependent area cursor , 2009, CHI.

[16]  Krishna Bharat,et al.  Making computers easier for older adults to use: area cursors and sticky icons , 1997, CHI.

[17]  John F. Hughes,et al.  Multi-finger cursor techniques , 2006, Graphics Interface.

[18]  Mark W. Newman,et al.  Escape: a target selection technique using visually-cued gestures , 2008, CHI.

[19]  Regan L. Mandryk,et al.  TractorBeam Selection Aids: Improving Target Acquisition for Pointing Input on Tabletop Displays , 2005, INTERACT.

[20]  Patrick Baudisch,et al.  Precise selection techniques for multi-touch screens , 2006, CHI.

[21]  Emmanuel Pietriga,et al.  Sigma lenses: focus-context transitions combining space, time and translucence , 2008, CHI.

[22]  Benjamin B. Bederson,et al.  Target size study for one-handed thumb use on small touchscreen devices , 2006, Mobile HCI.

[23]  Tovi Grossman,et al.  The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor's activation area , 2005, CHI.

[24]  Carl Gutwin,et al.  Improving focus targeting in interactive fisheye views , 2002, CHI.

[25]  Stéphane Huot,et al.  TapTap and MagStick: improving one-handed target acquisition on small touch-screens , 2008, AVI '08.