A five equation reduced model for compressible two phase flow problems

This paper studies an Eulerian diffuse interface model for the simulation of compressible multifluid and two-phase flow problems. We first show how to derive this model from a seven equation, two pressure, two velocity model of Baer-Nunziato type using an asymptotic analysis in the limit of zero relaxation time. We then study the mathematical properties of the system, the structure of the waves, the expression of the Riemann's invariants and the existence of a mathematical entropy. We also describe two different numerical approximation schemes for this system. The first one relies on a linearized Riemann solver while the second uses more heavily the mathematical structure of the system and relies on a linearization of the characteristic relations. Finally, we present some numerical experiments and comparisons with the results obtained by the two pressure, two velocity model as well as some test cases and comparisons with another five equation model recently proposed for interface computations between compressible fluids.

[1]  Jiaquan Gao,et al.  How to prevent pressure oscillations in multicomponent flow calculations , 2000, Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region.

[2]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[3]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[4]  Jean-Marc Hérard,et al.  Closure laws for a two-fluid two-pressure model , 2002 .

[5]  Roberto Natalini,et al.  Recent Mathematical Results on Hyperbolic Relaxation Problems , 1999 .

[6]  Steven F. Son,et al.  Two-Phase Modeling of DDT in Granular Materials: Reduced Equations , 2000 .

[7]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[8]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[9]  Angelo Murrone,et al.  Modèles bi-fluides à six et sept équations pour les écoulements diphasiques à faible nombre de Mach , 2003 .

[10]  Victor H. Ransom,et al.  Hyperbolic two-pressure models for two-phase flow , 1984 .

[11]  M. Lallemand,et al.  Pressure relaxation procedures for multiphase compressible flows , 2005 .

[12]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[13]  J. C. Martin An experimental study of the collapse of liquid column on a rigid horizontal plane , 1952 .

[14]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[15]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[16]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[18]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[19]  J. Craggs Applied Mathematical Sciences , 1973 .

[20]  Jean-Marc Hérard,et al.  A sequel to a rough Godunov scheme: application to real gases , 2000 .

[21]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[22]  S. SIAMJ.,et al.  A SIMPLE METHOD FOR COMPRESSIBLE MULTIFLUID FLOWS , 1999 .

[23]  H. Bruce Stewart,et al.  Two-phase flow: Models and methods , 1984 .

[24]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[25]  Donald Scott Stewart,et al.  Deflagration-to-detonation transition in porous energetic materials: A comparative model study , 1997 .