Modeling of masonry failure surface under biaxial compressive stress using Neural Networks

[1]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[2]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[3]  C. A. Syrmakezis,et al.  Earthquake resistant design of masonry tower structures , 1970 .

[4]  C. A. Syrmakezis,et al.  Structural Analysis Methodology For HistoricalBuildings , 1970 .

[5]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[6]  Edward M. Wu,et al.  Optimal Experimental Measurements of Anisotropic Failure Tensors , 1972 .

[7]  W. Samarasinghe,et al.  In-plane failure of brickwork , 1980 .

[8]  Aw Page,et al.  THE BIAXIAL COMPRESSIVE STRENGTH OF BRICK MASONRY. , 1981 .

[9]  Robert G. Drysdale,et al.  Proposed Failure Criteria for Concrete Block Masonry under Biaxial Stresses , 1981 .

[10]  Pw Kleeman,et al.  THE FAILURE OF BRICK MASONRY UNDER BIAXIAL STRESSES. , 1985 .

[11]  R. Tennyson,et al.  Closure of the Cubic Tensor Polynomial Failure Surface , 1989 .

[12]  Sachchidanand Sinha,et al.  Cyclic Behavior of Brick Masonry Under Biaxial Compression , 1991 .

[13]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[14]  A. Mathew,et al.  ANALYSIS OF MASONRY PANEL UNDER BIAXIAL BENDING USING ANNS AND CBR , 1999 .

[15]  Panagiotis G. Asteris,et al.  MASONRY FAILURE CRITERION UNDER BIAXIAL STRESS STATE , 2001 .

[16]  S. Carta,et al.  Unified Yield Criterion for Masonry and Concrete in Multiaxial Stress States , 2005 .

[17]  W. Dias,et al.  Field survey and numerical modelling of cracking in masonry walls due to thermal movements of an overlying slab , 2008 .

[18]  Aboelmagd Noureldin,et al.  Neural network modeling of time-dependent creep deformations in masonry structures , 2009, Neural Computing and Applications.

[19]  Deng Pan,et al.  Innovative ANN Technique for Predicting Failure/Cracking Load of Masonry Wall Panel under Lateral Load , 2010, J. Comput. Civ. Eng..

[20]  Yi Xiong,et al.  Techniques for Predicting Cracking Pattern of Masonry Wallet Using Artificial Neural Networks and Cellular Automata , 2010, J. Comput. Civ. Eng..

[21]  Alex Alexandridis,et al.  A neural network approach for compressive strength prediction in cement-based materials through the study of pressure-stimulated electrical signals , 2012 .

[22]  H. M. Tanarslan,et al.  An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks , 2012 .

[23]  Panagiotis G. Asteris,et al.  Unified Yield Surface for the Nonlinear Analysis of Brittle Anisotropic Materials , 2013 .

[24]  Murat Yurdakul,et al.  Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters , 2013 .

[25]  Dimitris Theodossopoulos,et al.  A review of analytical methods in the current design processes and assessment of performance of masonry structures , 2013 .

[26]  C. Poon,et al.  Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete , 2013 .

[27]  Rudolf Seracino,et al.  Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints , 2013 .