Continuous guided beams of slow and internally cold polar molecules.

We describe the combination of buffer-gas cooling with electrostatic velocity filtering to produce a high-flux continuous guided beam of internally cold and slow polar molecules. In a previous paper (L.D. van Buuren et al., Phys. Rev. Lett., 2009, 102, 033001) we presented results on density and state purity for guided beams of ammonia and formaldehyde using an optimized set-up. Here we describe in more detail the technical aspects of the cryogenic source, its operation, and the optimization experiments that we performed to obtain the best performance. The versatility of the source is demonstrated by the production of guided beams of different molecular species.

[1]  G. Rempe,et al.  Electrostatic extraction of cold molecules from a cryogenic reservoir. , 2008, Physical review letters.

[2]  G. Meijer,et al.  Taming molecular beams , 2008 .

[3]  A. Libson,et al.  Stopping supersonic beams with a series of pulsed electromagnetic coils: an atomic coilgun. , 2008, Physical review letters.

[4]  S. Willitsch,et al.  Cold Reactive Collisions between laser-cooled ions and velocity-selected neutral molecules. , 2008, Physical review letters.

[5]  A. Major,et al.  Slow beams of massive molecules , 2007, 0708.1449.

[6]  G. Rempe,et al.  Internal-state thermometry by depletion spectroscopy in a cold guided beam of formaldehyde , 2007, 0710.3316.

[7]  Beat H. Meier,et al.  Multistage Zeeman deceleration of hydrogen atoms , 2007 .

[8]  D. Patterson,et al.  Bright, guided molecular beam with hydrodynamic enhancement. , 2007, The Journal of chemical physics.

[9]  A. Libson,et al.  Coherent slowing of a supersonic beam with an atomic paddle. , 2006, Physical review letters.

[10]  A. Bishop,et al.  Controlling the motion of cold molecules with deep periodic optical potentials , 2006 .

[11]  Paul D. Lett,et al.  Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering , 2006 .

[12]  K. Góral,et al.  Production of cold molecules via magnetically tunable Feshbach resonances , 2006, cond-mat/0601420.

[13]  R. Decarvalho,et al.  High-flux beam source for cold, slow atoms or molecules. , 2005, Physical review letters.

[14]  G. Rempe,et al.  Continuous loading of an electrostatic trap for polar molecules. , 2005, Physical review letters.

[15]  J. Helton,et al.  Zeeman relaxation of CaF in low-temperature collisions with helium. , 2005, Physical review letters.

[16]  A. Bishop,et al.  Optical stark decelerator for molecules. , 2004, Physical review letters.

[17]  G. Rempe,et al.  Slow ammonia molecules in an electrostatic quadrupole guide , 2004 .

[18]  R. Krems,et al.  Editorial: Quo vadis, cold molecules? , 2004 .

[19]  D. Jin,et al.  Observation of heteronuclear Feshbach resonances in a mixture of bosons and fermions. , 2004, Physical review letters.

[20]  W. Ketterle,et al.  Observation of Feshbach resonances between two different atomic species. , 2004, Physical review letters.

[21]  V. L. Ryabov,et al.  Slowing heavy, ground-state molecules using an alternating gradient decelerator. , 2003, Physical review letters.

[22]  G. Rempe,et al.  Two-dimensional trapping of dipolar molecules in time-varying electric fields. , 2003, Physical review letters.

[23]  A. Kerman,et al.  Production of ultracold, polar RbCs* molecules via photoassociation. , 2003, Physical review letters.

[24]  I. Sulai,et al.  Low temperature pressure broadening of NH3 by D2. , 2004, The Journal of chemical physics.

[25]  James J. Valentini,et al.  Subkelvin Cooling NO Molecules via "Billiard-like" Collisions with Argon , 2003, Science.

[26]  G. Rempe,et al.  Continuous source of translationally cold dipolar molecules , 2002, physics/0209041.

[27]  A. Grum-Grzhimailo,et al.  Strong, polarized Balmer-alpha fluorescence after resonant core excitation of HCl. , 2002, Physical review letters.

[28]  R. Jongma,et al.  Deceleration and trapping of ammonia using time-varying electric fields , 2002 .

[29]  C. Zimmermann,et al.  Photoassociation of heteronuclear lithium , 2001 .

[30]  F. Stienkemeier,et al.  Electronic spectroscopy in He droplets , 2001 .

[31]  N. Balakrishnan,et al.  Chemistry at Ultracold Temperatures , 2001 .

[32]  D. Herschbach,et al.  A Mechanical Means to Produce Intense Beams of Slow Molecules , 1999 .

[33]  G. Berden,et al.  Decelerating neutral dipolar molecules , 1999 .

[34]  D. Herschbach Chemical Physics: Molecular Clouds, Clusters, and Corrals , 1999 .

[35]  R. Decarvalho,et al.  Magnetic trapping of calcium monohydride molecules at millikelvin temperatures , 1998, Nature.

[36]  J.J. Shea,et al.  Foundations of Vacuum Science and Technology , 1998, IEEE Electrical Insulation Magazine.

[37]  C. A. Sackett,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions [Phys. Rev. Lett. 75, 1687 (1995)] , 1997 .

[38]  E. Hinds TESTING TIME REVERSAL SYMMETRY USING MOLECULES , 1997 .

[39]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[40]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[41]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[42]  H. Dijkerman,et al.  Self-broadening and self-shifting of some rotational transitions of CF3H and N2O , 1979 .

[43]  Nicholas Chapman,et al.  Microwave Spectroscopy , 1955, Nature.

[44]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .