Non-classicality versus channel capacity for a superposition of entangled coherent states

The entropy and Mandel function as entanglement predictable of multipartite entangled coherent states are studied. The possibility of using these states as quantum channel to perform quantum teleportation is investigated. Quantum teleportation is achieved by using both even and odd entangled coherent states in the presence of environmental noise. The effect of the field’s parameters are investigated on the fidelity of the teleported state.

[1]  Morad El Baz,et al.  Quantum key distribution via tripartite coherent states , 2011, Quantum Inf. Process..

[2]  A. Mecozzi,et al.  Generation of macroscopically distinguishable quantum states and detection by the squeezed-vacuum technique , 1987 .

[3]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[4]  Vlatko Vedral,et al.  Entanglement in Quantum Information Theory , 1998, quant-ph/9804075.

[5]  Stefano Pirandola,et al.  Quantum teleportation with continuous variables: A survey , 2006 .

[6]  Xiaoguang Wang Quantum teleportation of entangled coherent states , 2001 .

[7]  S. J. van Enk Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. , 2003, Physical Review Letters.

[8]  M. M. Miller,et al.  Fundamentals of Quantum Optics , 1968 .

[9]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[10]  M. S. Zubairy,et al.  Entanglement of Gaussian states using a beam splitter , 2008, 0810.1399.

[11]  Knight,et al.  Superpositions of coherent states: Squeezing and dissipation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  Nasser Metwally,et al.  Abrupt decay of entanglement and quantum communication through noise channels , 2008, Quantum Inf. Process..

[15]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[16]  A. EINsTEIN,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete ' ? , 2011 .

[17]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[18]  L. Mandel,et al.  Sub-Poissonian photon statistics in resonance fluorescence. , 1979, Optics letters.

[19]  Nikonov,et al.  Even and odd coherent states for multimode parametric systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[21]  P. Adam,et al.  Coherent state expansion of squeezed states , 1990 .

[22]  D. Stoler Equivalence classes of minimum-uncertainty packets. ii , 1970 .

[23]  Y. Hassouni,et al.  Communication via an entangled coherent quantum network , 2010, 1011.3915.

[24]  Yurke,et al.  Quantum behavior of a four-wave mixer operated in a nonlinear regime. , 1987, Physical review. A, General physics.

[25]  Vlatko Vedral,et al.  Introduction to Quantum Information Science , 2006 .

[26]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[27]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[28]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[29]  Michal Horodecki,et al.  Thermodynamics of Quantum Information Systems — Hamiltonian Description , 2004, Open Syst. Inf. Dyn..

[30]  N. Metwally,et al.  Transfer information remotely via noise entangled coherent channels , 2010, 1002.2333.

[31]  Vinogradov,et al.  Squeezing via one-dimensional distribution of coherent states. , 1990, Physical review letters.

[32]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[33]  Ansari,et al.  Photon statistics of multimode even and odd coherent light. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[34]  P. Knight,et al.  The origin of squeezing in a superposition of coherent states , 1991 .