Measurements of ion-electron energy-transfer cross section in high-energy-density plasmas.

We report on measurements of the ion-electron energy-transfer cross section utilizing low-velocity ion stopping in high-energy-density plasmas at the OMEGA laser facility. These measurements utilize a technique that leverages the close relationship between low-velocity ion stopping and ion-electron equilibration. Shock-driven implosions of capsules filled with D^{3}He gas doped with a trace amount of argon are used to generate densities and temperatures in ranges from 1×10^{23} to 2×10^{24} cm^{-3} and from 1.4 to 2.5 keV, respectively. The energy loss of 1-MeV DD tritons and 3.7-MeV D^{3}He alphas that have velocities lower than the average velocity of the thermal electrons is measured. The energy loss of these ions is used to determine the ion-electron energy-transfer cross section, which is found to be in excellent agreement with quantum-mechanical calculations in the first Born approximation. This result provides an experimental constraint on ion-electron energy transfer in high-energy-density plasmas, which impacts the modeling of alpha heating in inertial confinement fusion implosions, magnetic-field advection in stellar atmospheres, and energy balance in supernova shocks.

[1]  Lin H. Yang,et al.  Comparison of ablators for the polar direct drive exploding pusher platform , 2020, 2006.15635.

[2]  E. Grant,et al.  Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics , 2019, Physics of Plasmas.

[3]  J. Gaffney,et al.  Making inertial confinement fusion models more predictive , 2019, Physics of Plasmas.

[4]  O. Hurricane,et al.  On alpha-particle transport in inertial fusion , 2019, Physics of Plasmas.

[5]  J. Daligault,et al.  Effects of Coulomb coupling on stopping power and a link to macroscopic transport , 2019, Physics of Plasmas.

[6]  Hui Chen,et al.  Development and modeling of a polar-direct-drive exploding pusher platform at the National Ignition Facility , 2018, Physics of Plasmas.

[7]  J. Kilkenny,et al.  Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments , 2018 .

[8]  C Sorce,et al.  A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited). , 2016, The Review of scientific instruments.

[9]  J. Daligault On the quantum Landau collision operator and electron collisions in dense plasmas , 2016 .

[10]  D. Meyerhofer,et al.  Collisional effects on Rayleigh-Taylor-induced magnetic fieldsa) , 2015 .

[11]  R. Tommasini,et al.  Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA , 2014 .

[12]  J. Vink,et al.  On the electron-ion temperature ratio established by collisionless shocks , 2014, 1407.4499.

[13]  J. Koch,et al.  Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra , 2014, 1405.4016.

[14]  S. Schwartz,et al.  Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection , 2013, 1305.6617.

[15]  D. Meyerhofer,et al.  Instability-driven electromagnetic fields in coronal plasmasa) , 2013 .

[16]  R. London,et al.  Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project , 2012 .

[17]  D. Gericke,et al.  Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas , 2009, 0901.3101.

[18]  G. Gregori,et al.  A reduced coupled-mode description for the electron-ion energy relaxation in dense matter , 2008 .

[19]  R. McCray,et al.  Spatial Structure and Collisionless Electron Heating in Balmer-dominated Shocks , 2008, 0803.2521.

[20]  L. Brown,et al.  Charged Particle Motion in a Highly Ionized Plasma , 2005, physics/0501084.

[21]  T. C. Sangster,et al.  Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA , 2004 .

[22]  P. W. McKenty,et al.  D3He-proton emission imaging for inertial-confinement-fusion experiments (invited) , 2004 .

[23]  Stefano Atzeni,et al.  The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .

[24]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[25]  Barry E. Schwartz,et al.  Spectrometry of charged particles from inertial-confinement-fusion plasmas , 2003 .

[26]  J. M. Soures,et al.  Charged-particle acceleration and energy loss in laser-produced plasmas , 2000 .

[27]  G. Gorini,et al.  Relativistic calculation of fusion product spectra for thermonuclear plasmas , 1998 .

[28]  P Hammerling,et al.  Thermal conduction in laser fusion , 1975 .

[29]  M. Desjarlais,et al.  Frontiers and challenges in warm dense matter , 2014 .

[30]  D. Gericke Kinetic approach to temperature relaxation in dense plasmas , 2005 .

[31]  Stephen M. Lane,et al.  HYADES—A plasma hydrodynamics code for dense plasma studies , 1994 .