Journal of Computational and Applied Mathematics a Posteriori Error Analysis of a Cell-centered Finite Volume Method for Semilinear Elliptic Problems

In this paper, we conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme for a semilinear elliptic problem. The a posteriori error analysis is based on variational analysis, residual errors and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choice of quadrature.

[1]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[2]  Abdellatif Agouzal,et al.  A posteriori error estimator for finite volume methods , 2000, Appl. Math. Comput..

[3]  Juan I. Ramos,et al.  A finite volume method for one-dimensional reaction-diffusion problems , 2007, Appl. Math. Comput..

[4]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..

[5]  P. Lax,et al.  Systems of conservation laws , 1960 .

[6]  Martin Vohralík,et al.  Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.

[7]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[8]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[9]  Roy D. Williams,et al.  Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .

[10]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[11]  A. Weiser,et al.  On convergence of block-centered finite differences for elliptic-problems , 1988 .

[12]  Eun-Jae Park,et al.  Mixed finite element methods for nonlinear second-order elliptic problems , 1995 .

[13]  Rüdiger Verfürth,et al.  A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem , 2004, Numerical Algorithms.

[14]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[15]  Serge Nicaise,et al.  A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..

[16]  Timothy J. Barth,et al.  A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods , 2005 .

[17]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[18]  Wen Lea Pearn,et al.  (Journal of Computational and Applied Mathematics,228(1):274-278)Optimization of the T Policy M/G/1 Queue with Server Breakdowns and General Startup Times , 2009 .

[19]  Timothy J. Barth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .

[20]  Serge Nicaise,et al.  A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..

[21]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[24]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[25]  Yves Achdou,et al.  A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.

[26]  Bernardo Cockburn,et al.  A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[27]  Donald Estep,et al.  A Short Course on Duality , Adjoint Operators , Green ’ s Functions , and A Posteriori Error Analysis , 2004 .

[28]  Paul Castillo An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method , 2005, J. Sci. Comput..

[29]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[30]  Mats G. Larson,et al.  A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .

[31]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[32]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[33]  J. Maître,et al.  Connection between finite volume and mixed finite element methods , 1996 .