Subexponential Parameterized Algorithm for Computing the Cutwidth of a Semi-complete Digraph
暂无分享,去创建一个
[1] Paul D. Seymour,et al. Edge-disjoint paths in digraphs with bounded independence number , 2015, J. Comb. Theory, Ser. B.
[2] Michal Pilipczuk,et al. Subexponential fixed-parameter tractability of cluster editing , 2011, ArXiv.
[3] Paul D. Seymour,et al. Tournament minors , 2012, J. Comb. Theory, Ser. B.
[4] G. Hardy,et al. Asymptotic formulae in combinatory analysis , 1918 .
[5] Paul D. Seymour,et al. A well-quasi-order for tournaments , 2011, J. Comb. Theory, Ser. B.
[6] JOSEP DÍAZ,et al. A survey of graph layout problems , 2002, CSUR.
[7] Marek Karpinski,et al. Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament , 2010, ISAAC.
[8] Michal Pilipczuk,et al. Tight bounds for Parameterized Complexity of Cluster Editing , 2013, STACS.
[9] Paul Erdös,et al. On an Elementary Proof of Some Asymptotic Formulas in the Theory of Partitions , 1942 .
[10] Michal Pilipczuk,et al. Jungles, bundles, and fixed parameter tractability , 2011, SODA.
[11] Uriel Feige. Faster FAST(Feedback Arc Set in Tournaments) , 2009, ArXiv.
[12] Michal Pilipczuk. Computing cutwidth and pathwidth of semi-complete digraphs via degree orderings , 2013, STACS.
[13] G. Hardy,et al. Asymptotic Formulaæ in Combinatory Analysis , 1918 .
[14] Norman E. Gibbs,et al. The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.
[15] Fahad Panolan,et al. Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, SWAT.
[16] Noga Alon,et al. Fast Fast , 2009, ICALP.
[17] Paul D. Seymour,et al. Tournament pathwidth and topological containment , 2013, J. Comb. Theory, Ser. B.
[18] Paul D. Seymour,et al. Tournament immersion and cutwidth , 2012, J. Comb. Theory, Ser. B.