Predicting continuum breakdown with deep neural networks

[1]  Cory D. Hauck,et al.  Neural network-based, structure-preserving entropy closures for the Boltzmann moment system , 2022, ArXiv.

[2]  Cory D. Hauck,et al.  A structure-preserving surrogate model for the closure of the moment system of the Boltzmann equation using convex deep neural networks , 2021, AIAA AVIATION 2021 FORUM.

[3]  Tianbai Xiao,et al.  Kinetic.jl: A portable finite volume toolbox for scientific and neural computing , 2021, J. Open Source Softw..

[4]  Tianbai Xiao,et al.  Using neural networks to accelerate the solution of the Boltzmann equation , 2020, J. Comput. Phys..

[5]  George Em Karniadakis,et al.  Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation , 2020, J. Comput. Phys..

[6]  Jun Zhang,et al.  Data-driven discovery of governing equations for fluid dynamics based on molecular simulation , 2020, Journal of Fluid Mechanics.

[7]  G. Karniadakis,et al.  Physics-informed neural networks for high-speed flows , 2020, Computer Methods in Applied Mechanics and Engineering.

[8]  Tianbai Xiao,et al.  A stochastic kinetic scheme for multi-scale flow transport with uncertainty quantification , 2020, J. Comput. Phys..

[9]  George Em Karniadakis,et al.  Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations , 2020, Science.

[10]  Luning Sun,et al.  Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data , 2019, Computer Methods in Applied Mechanics and Engineering.

[11]  Yingzhou Li,et al.  Variational training of neural network approximations of solution maps for physical models , 2019, J. Comput. Phys..

[12]  Kun Xu,et al.  A unified gas-kinetic scheme for multiscale and multicomponent flow transport , 2019, Applied Mathematics and Mechanics.

[13]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[14]  Lexing Ying,et al.  SwitchNet: a neural network model for forward and inverse scattering problems , 2018, SIAM J. Sci. Comput..

[15]  Kun Xu,et al.  A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows , 2018, J. Comput. Phys..

[16]  Steven L. Brunton,et al.  Data-driven discovery of partial differential equations , 2016, Science Advances.

[17]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[18]  Kun Xu,et al.  Direct modeling for computational fluid dynamics , 2015, Acta Mechanica Sinica.

[19]  V. Pavan General Entropic Approximations for Canonical Systems Described by Kinetic Equations , 2011 .

[20]  C. D. Levermore,et al.  Convex duality and entropy-based moment closures: Characterizing degenerate densities , 2008, 2008 47th IEEE Conference on Decision and Control.

[21]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[22]  Kun Xu,et al.  The kinetic scheme for the full-Burnett equations , 2004 .

[23]  G. Laville,et al.  Stone-Weierstrass theorem , 2004, math/0411090.

[24]  Graham V. Candler,et al.  A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows , 2004 .

[25]  Michael Junk,et al.  Maximum entropy moment systems and Galilean invariance , 2002 .

[26]  Michael Junk,et al.  MAXIMUM ENTROPY FOR REDUCED MOMENT PROBLEMS , 2000 .

[27]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[28]  Michael Junk,et al.  Domain of Definition of Levermore's Five-Moment System , 1998 .

[29]  Balasubramanya T. Nadiga,et al.  MOMENT REALIZABILITY AND THE VALIDITY OF THE NAVIER-STOKES EQUATIONS FOR RAREFIED GAS DYNAMICS , 1998 .

[30]  Alejandro L. Garcia,et al.  Generation of the Chapman-Enskog Distribution , 1998 .

[31]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[32]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[33]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[34]  Lowell H. Holway,et al.  New Statistical Models for Kinetic Theory: Methods of Construction , 1966 .

[35]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[36]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[37]  Hsue-shen Tsien,et al.  Superaerodynamics, Mechanics of Rarefied Gases , 1946 .

[38]  C. Hauck,et al.  Structure Preserving Neural Networks: A Case Study in the Entropy Closure of the Boltzmann Equation , 2022, ICML.

[39]  C. David Levermore,et al.  Entropy-based moment closures for kinetic equations , 1997 .

[40]  Graham V. Candler,et al.  Predicting failure of the continuum fluid equations in transitional hypersonic flows , 1994 .

[41]  S. A. Schaaf Rarefied Gas Dynamics , 1969 .

[42]  E. M. Shakhov Generalization of the Krook kinetic relaxation equation , 1968 .