Irradiance sensitivity of the model parameters of photovoltaic cells

Photovoltaic (PV) systems have been successfully used for over five decades. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the temperature and the irradiance values of the site where the panel is placed. In this paper the performances of PV cells are analysed related to the different irradiance level by using the circuit sensitivity. Therefore the model parameters of the equivalent circuits for typical PV cell are characterized by first-order sensitivity relations. LabVIEW and MatLab applications are implemented to prove the theoretical models. Numerical examples taken from real case on PV cells are provided.

[1]  R. Ramakumar,et al.  Photovoltaic applications , 1994 .

[2]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[3]  Yukiharu Uraoka,et al.  Field-test analysis of PV system output characteristics focusing on module temperature , 2003 .

[4]  H. Andrei,et al.  Analysis of the PV panels connections using the four-terminal parameters equations , 2011, 2011 IEEE Trondheim PowerTech.

[5]  R. Faranda,et al.  Energy Comparison of Seven MPPT Techniques for PV Systems , 2009 .

[6]  M. Liserre,et al.  Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics , 2010, IEEE Industrial Electronics Magazine.

[7]  Emil Diaconu,et al.  Contributions on sensitivity analysis for the analog two-port networks in non-sinusoidal regime , 2011, 2011 IEEE EUROCON - International Conference on Computer as a Tool.

[8]  U. Boke A simple model of photovoltaic module electric characteristics , 2007, 2007 European Conference on Power Electronics and Applications.

[9]  Luiz A. C. Lopes,et al.  Comparative study of variable size perturbation and observation maximum power point trackers for PV systems , 2010 .

[10]  J. I. Rosell,et al.  Modelling power output in photovoltaic modules for outdoor operating conditions , 2006 .

[11]  F.Z. Peng,et al.  Analytical Model for a Photovoltaic Module using the Electrical Characteristics provided by the Manufacturer Data Sheet , 2005, 2005 IEEE 36th Power Electronics Specialists Conference.

[12]  J. L. Balenzategui,et al.  Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations , 2004 .

[13]  Horia Andrei,et al.  Sensitivity analysis of the Multiple FeedBack filter in non-sinusoidal regime , 2010, 2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD).

[14]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[15]  Gehan A. J. Amaratunga,et al.  Analytic Solution to the Photovoltaic Maximum Power Point Problem , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[17]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[18]  Horia Andrei,et al.  Sensitivity Analysis of the Linear Networks in Non- sinusoidal Regime , 2010 .

[19]  Gerard Champenois,et al.  Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions , 2012 .

[20]  M. C. Alonso-García,et al.  A model for the series–parallel association of photovoltaic devices , 2006 .

[21]  J. Nelson The physics of solar cells , 2003 .

[22]  J. C. Schaefer Review of photovoltaic power plant performance and economics , 1990 .