A Unifying Theoretical Framework for Region Tracking

Visual region-based tracking is a heavily researched general approach to following a target across a temporal image sequence. Little research, however, has addressed the interrelationships of the various proposed approaches at a theoretical level. In response to this situation, the present paper describes a unifying framework for a wide range of region trackers in terms of the amount of spatial layout that they maintain in their target representation. This framework yields a general notation from which any of these trackers can be instantiated. To illustrate the practical utility of the framework, a range of region trackers are instantiated within its formalism and used to document empirically the impact of maintaining variable amounts of spatial information during target tracking.

[1]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[2]  Patrick Pérez,et al.  Robust tracking with motion estimation and local Kernel-based color modeling , 2007, Image Vis. Comput..

[3]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[4]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Igor Guskov Kernel-based Template Alignment , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[7]  Richard P. Wildes,et al.  Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy Representation , 2010, ECCV.

[8]  Gérard G. Medioni,et al.  Continuous tracking within and across camera streams , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Michal Irani,et al.  Computing occluding and transparent motions , 1994, International Journal of Computer Vision.

[10]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[11]  David G. Stork,et al.  Pattern Classification , 1973 .

[12]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[13]  Visvanathan Ramesh,et al.  Tunable Kernels for Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Irene Y. H. Gu,et al.  Robust Object Tracking Using Particle Filters and Multi-region Mean Shift , 2009, PCM.

[15]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[16]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Jie Yang,et al.  A novel fragments-based tracking algorithm using mean shift , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[19]  MatthewsIain,et al.  Lucas-Kanade 20 Years On , 2004 .

[20]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Richard P. Wildes,et al.  Spatiotemporal Oriented Energy Features for Visual Tracking , 2007, ACCV.

[22]  Junseok Kwon,et al.  Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling , 2009, CVPR.

[23]  Maneesh Dewan Toward Optimal Kernel-based Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[26]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Ming Yang,et al.  Multiple Collaborative Kernel Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Z. M. Hefed Object tracking , 1999 .

[29]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[30]  Gregory Hager,et al.  Multiple kernel tracking with SSD , 2004, CVPR 2004.