On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process

This paper is a contribution to the analysis of the statistical correlation of the wavelet packet coefficients resulting from the decomposition of a random process, stationary in the wide-sense, whose power spectral density (PSD) is bounded with support in [-@p,@p]. Consider two quadrature mirror filters (QMF) that depend on a parameter r, such that these filters tend almost everywhere to the Shannon QMF when r increases. The parameter r is called the order of the QMF under consideration. The order of the Daubechies filters (resp. the Battle-Lemarie filters) is the number of vanishing moments of the wavelet function (resp. the spline order of the scaling function). Given any decomposition path in the wavelet packet tree, the wavelet packet coefficients are proved to decorrelate for every packet associated with a large enough resolution level, provided that the QMF order is large enough and above a value that depends on this wavelet packet. Another consequence of our derivation is that, when the coefficients associated with a given wavelet packet are approximately decorrelated, the value of the autocorrelation function of these coefficients at lag 0 is close to the value taken by the PSD of the decomposed process at a specific point. This specific point depends on the path followed in the wavelet packet tree to attain the wavelet packet under consideration. Some simulations highlight the good quality of the ''whitening'' effect that can be obtained in practical cases.

[1]  Alberto Contreras-Cristán,et al.  Multitaper power spectrum estimation and thresholding: wavelet packets versus wavelets , 2002, IEEE Trans. Signal Process..

[2]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[3]  Lemoine,et al.  5 - Démodulation cohérente par analyse multi-résolution en présence de bruit parasite coloré et gaussien , 1998 .

[4]  Alan R. Lindsey,et al.  Exploiting the synergies of circular simplex turbo block coding and wavelet packet modulation , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[5]  Eric Séré Localisation fréquentielle des paquets d'ondelettes , 1995 .

[6]  Jean-Christophe Pesquet,et al.  Some Results on the Wavelet Packet Decomposition of Nonstationary Processes , 2002, EURASIP J. Adv. Signal Process..

[7]  Stefan Karlsson,et al.  Local spectral analysis using wavelet packets , 2001 .

[8]  Michel Loève,et al.  Probability Theory I , 1977 .

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  Josiane Zerubia,et al.  Satellite image deconvolution using complex wavelet packets , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[11]  J. Ilow,et al.  A multi-wavelet packet modulation in wireless communications , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[12]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[13]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[14]  Michael Unser,et al.  Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..

[15]  D. Pastor Décomposition d'un processus stationnaire du second ordre . Propriétés statistiques d'ordre 2 des coefficients d'ondelettes et localisation fréquentielle des paquets d'ondelettes , 1995 .

[16]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[17]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[18]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[19]  M. Vannucci,et al.  Wavelet Packet Methods for the Analysis of Variance of Time Series With Application to Crack Widths on the Brunelleschi Dome , 2004 .

[20]  M. Victor Wickerhauser,et al.  Wavelets: Algorithms and Applications (Yves Meyer) , 1994, SIAM Rev..

[21]  Hamid Aghvami,et al.  On the Use of Wavelet Packets in Ultra Wideband Pulse Shape Modulation Systems , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[22]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[23]  S. Mallat A wavelet tour of signal processing , 1998 .

[24]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[25]  Anthony D. Fagan,et al.  Optimal Wavelet Packet Modulation under finite complexity constraint , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[26]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[27]  Ravi Mazumdar,et al.  On the correlation structure of the wavelet coefficients of fractional Brownian motion , 1994, IEEE Trans. Inf. Theory.

[28]  G. Walter Wavelets and other orthogonal systems with applications , 1994 .

[29]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[30]  Arnon Cohen,et al.  Ondelettes et traitement numérique du signal , 1992 .

[31]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[32]  Gilbert Strang,et al.  Asymptotics of Daubechies Filters, Scaling Functions, and Wavelets , 1998 .

[33]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[34]  David Leporini,et al.  High-Order Wavelet Packets and Cumulant Field Analysis , 1999, IEEE Trans. Inf. Theory.

[35]  Donald B. Percival,et al.  Asymptotic decorrelation of between-Scale Wavelet coefficients , 2005, IEEE Transactions on Information Theory.

[36]  Jun Zhang,et al.  A wavelet-based KL-like expansion for wide-sense stationary random processes , 1994, IEEE Trans. Signal Process..

[37]  Gilbert Strang,et al.  Asymptotic analysis of Daubechies polynomials , 1996 .

[38]  J. Skilling,et al.  Algorithms and Applications , 1985 .