Biocompatibility of nanoporous alumina membranes for immunoisolation.

[1]  D. Scherman,et al.  PEGylation of microspheres for therapeutic embolization: preparation, characterization and biological performance evaluation. , 2007, Biomaterials.

[2]  Bo Nilsson,et al.  The role of complement in biomaterial-induced inflammation. , 2007, Molecular immunology.

[3]  J. Pedraz,et al.  Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. , 2006, Biomaterials.

[4]  W. D. de Jong,et al.  In vitro and in vivo (cyto)toxicity assays using PVC and LDPE as model materials. , 2006, Journal of biomedical materials research. Part A.

[5]  N. Zitzmann,et al.  [Long-term clinical results with Procera AllCeram full-ceramic crowns]. , 2006, Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia.

[6]  A. Lloyd,et al.  Assessing the in vitro biocompatibility of a novel carbon device for the treatment of sepsis. , 2005, Biomaterials.

[7]  Tejal A Desai,et al.  Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. , 2005, Diabetes technology & therapeutics.

[8]  Andrea Remuzzi,et al.  Subcutaneous xenotransplantation of bovine pancreatic islets. , 2005, Biomaterials.

[9]  Tejal A Desai,et al.  Influence of nanoporous alumina membranes on long-term osteoblast response. , 2005, Biomaterials.

[10]  Tejal A Desai,et al.  Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. , 2005, Biomaterials.

[11]  Y. Ikada,et al.  Interaction of poly(styrene sulfonic acid) with the alternative pathway of the serum complement system , 2005, Journal of biomaterials science. Polymer edition.

[12]  A. Neumann,et al.  Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro , 2004, Journal of materials science. Materials in medicine.

[13]  Tejal A Desai,et al.  Nanoporous microsystems for islet cell replacement. , 2004, Advanced drug delivery reviews.

[14]  Tejal A Desai,et al.  Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  Tejal A Desai,et al.  Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. , 2004, Biosensors & bioelectronics.

[16]  Tejal A Desai,et al.  Micromachined biocapsules for cell-based sensing and delivery. , 2004, Advanced drug delivery reviews.

[17]  カロウビ、ゴルナズ,et al.  The encapsulated cell therapy , 2003 .

[18]  Hanry Yu,et al.  Microcapsules with improved mechanical stability for hepatocyte culture. , 2003, Biomaterials.

[19]  L. Costa,et al.  In vitro evaluation of the inflammatory activity of ultra-high molecular weight polyethylene. , 2003, Biomaterials.

[20]  C. Grimes,et al.  Controlled Molecular Release Using Nanoporous Alumina Capsules , 2003 .

[21]  T. Desai MEMS-Based Technologies for Cellular Encapsulation , 2003 .

[22]  T. Desai,et al.  Microfabricated drug delivery systems: from particles to pores. , 2003, Advanced drug delivery reviews.

[23]  T. Desai,et al.  Characterization of Nanoporous Membranes for Immunoisolation: Diffusion Properties and Tissue Effects , 2002 .

[24]  James M. Anderson,et al.  Biological Responses to Materials , 2001 .

[25]  R. Udelsman,et al.  Intraperitoneal delivery of insulin via mechanical pump: surgical implications , 2000, Langenbeck's Archives of Surgery.

[26]  M Ferrari,et al.  Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. , 2000, Biomolecular engineering.

[27]  P. Tresco,et al.  Technology of mammalian cell encapsulation. , 2000, Advanced drug delivery reviews.

[28]  M. Ferrari,et al.  Nanopore Technology for Biomedical Applications , 1999 .

[29]  M. Ferrari,et al.  Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications , 1999 .

[30]  M. Ferrari,et al.  Proteins and cells on PEG immobilized silicon surfaces. , 1998, Biomaterials.

[31]  N. Itoh,et al.  Strengthened porous alumina membrane tube prepared by means of internal anodic oxidation , 1998 .

[32]  G. Renard,et al.  Biocompatibilité dans la cavité orbitaire d'une bille en alumine poreuse. Résultats préliminaires de l'expérimentation animale , 1998 .

[33]  Jyh-Ping Chen,et al.  Microencapsulation of islets in PEG-amine modified alginate-poly(l-lysine)-alginate microcapsules for constructing bioartificial pancreas , 1998 .

[34]  X. Morel,et al.  [Biocompatibility of a porous alumina orbital implant. Preliminary results of an animal experiment]. , 1998, Journal francais d'ophtalmologie.

[35]  P. Bruheim,et al.  Alginate polycation microcapsules. II. Some functional properties. , 1996, Biomaterials.

[36]  Anthony G. Gristina,et al.  Host Reactions to Biomaterials and Their Evaluation , 1996 .

[37]  P. Bruheim,et al.  Alginate polycation microcapsules. I. Interaction between alginate and polycation. , 1996, Biomaterials.

[38]  C. Colton,et al.  Implantable biohybrid artificial organs. , 1995, Cell transplantation.

[39]  W. Duckworth,et al.  Why Intraperitoneal Delivery of Insulin With Implantable Pumps in NIDDM? , 1992, Diabetes.

[40]  J M Anderson,et al.  Inflammatory response to implants. , 1988, ASAIO transactions.

[41]  P. Richardson,et al.  A hybird artifical pancreas. , 1975, Transactions - American Society for Artificial Internal Organs.