Integrality Gaps for Bounded Color Matchings

We investigate the performance of two common lift-and-project techniques, the Sherali-Adams (SA) and the Balas, Ceria and Cornu\'ejols (BCC) hierarchies, on the natural linear relaxation of the Bounded Color Matching polyhedron and generalizations. We prove the following unconditional inapproximability results: even a large family of linear programs, generated by an asymptotically linear number of rounds of the Sherali-Adams hierarchy or a linear number of rounds of the BCC hierarchy, is not enough to improve the integrality gap of the natural LP relaxation even in bipartite graphs. We complement these results by showing in a non-algorithmic way that if we exclude certain sub-structures from our instance graphs, then the integrality gap of the natural linear formulation improves.

[1]  Zoltán Füredi,et al.  Maximum degree and fractional matchings in uniform hypergraphs , 1981, Comb..

[2]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[3]  Van Bang Le,et al.  Complexity results for rainbow matchings , 2013, Theor. Comput. Sci..

[4]  Mihalis Yannakakis,et al.  The complexity of restricted spanning tree problems , 1982, JACM.

[5]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..

[6]  Venkatesan Guruswami,et al.  MaxMin allocation via degree lower-bounded arborescences , 2009, STOC '09.

[7]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[8]  Raphael Yuster Almost Exact Matchings , 2011, Algorithmica.

[9]  Daniel Bienstock,et al.  Subset Algebra Lift Operators for 0-1 Integer Programming , 2004, SIAM J. Optim..

[10]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[11]  Konstantinos Georgiou,et al.  On integrality ratios for asymmetric TSP in the Sherali–Adams hierarchy , 2013, Mathematical Programming.

[12]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[13]  A. V. Karzanov Maximum matching of given weight in complete and complete bipartite graphs , 1987 .

[14]  Claire Mathieu,et al.  Sherali-adams relaxations of the matching polytope , 2009, STOC '09.

[15]  Aris Pagourtzis,et al.  Minimizing request blocking in all-optical rings , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[16]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[17]  Avner Magen,et al.  Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy , 2009, APPROX-RANDOM.

[18]  Levent Tunçel,et al.  Complexity Analyses of Bienstock-Zuckerberg and Lasserre Relaxations on the Matching and Stable Set Polytopes , 2011, IPCO.

[19]  Aris Pagourtzis,et al.  Randomized and Approximation Algorithms for Blue-Red Matching , 2007, MFCS.

[20]  David E. Woolbright An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.

[21]  Konstantinos Georgiou,et al.  Lift-and-Project Methods for Set Cover and Knapsack , 2013, WADS.

[22]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[23]  Yuk Hei Chan,et al.  On linear and semidefinite programming relaxations for hypergraph matching , 2010, Mathematical Programming.

[24]  Georgios Stamoulis,et al.  Approximation Algorithms for Bounded Color Matchings via Convex Decompositions , 2014, MFCS.

[25]  Béla Bollobás,et al.  Proving integrality gaps without knowing the linear program , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[26]  Yuan Zhou,et al.  Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems , 2014, ITCS.

[27]  Katta G. Murty,et al.  Matchings in colored bipartite networks , 2002, Discret. Appl. Math..

[28]  Ojas Parekh Iterative Packing for Demand and Hypergraph Matching , 2011, IPCO.

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  Sanjeev Arora,et al.  New approximation guarantee for chromatic number , 2006, STOC '06.

[31]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[32]  Ojas Parekh,et al.  Generalized Hypergraph Matching via Iterated Packing and Local Ratio , 2014, WAOA.

[33]  Prasad Raghavendra,et al.  Approximating Sparsest Cut in Graphs of Bounded Treewidth , 2010, APPROX-RANDOM.

[34]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[35]  Alon Itai,et al.  Some Matching Problems for Bipartite Graphs , 1978, JACM.

[36]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[37]  Irena Rusu Maximum weight edge-constrained matchings , 2008, Discret. Appl. Math..

[38]  Jirí Matousek,et al.  Invitation to discrete mathematics , 1998 .

[39]  Tamon Stephen,et al.  On a Representation of the Matching Polytope Via Semidefinite Liftings , 1999, Math. Oper. Res..

[40]  Aravind Srinivasan,et al.  Lift-and-round to improve weighted completion time on unrelated machines , 2015, STOC.

[41]  Ioannis Caragiannis Wavelength Management in WDM Rings to Maximize the Number of Connections , 2007, STACS.

[42]  Graciela L. Nasini,et al.  Lift and project relaxations for the matching and related polytopes , 2004, Discret. Appl. Math..

[43]  Prasad Raghavendra,et al.  A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs , 2016, ICALP.

[44]  Anupam Gupta,et al.  Sparsest cut on bounded treewidth graphs: algorithms and hardness results , 2013, STOC '13.

[45]  Konstantinos Georgiou,et al.  Understanding Set Cover: Sub-exponential Time Approximations and Lift-and-Project Methods , 2012, ArXiv.

[46]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[47]  Claire Mathieu,et al.  Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack , 2011, IPCO.

[48]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[49]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[50]  Claire Mathieu,et al.  Semidefinite and linear programming integrality gaps for scheduling identical machines , 2016, IPCO.