Preparation of Phosphorylated Proteins for NMR Spectroscopy.

[1]  Chad J. Miller,et al.  Homing in: Mechanisms of Substrate Targeting by Protein Kinases. , 2018, Trends in biochemical sciences.

[2]  K. Lindorff-Larsen,et al.  Dynamic activation and regulation of the mitogen-activated protein kinase p38 , 2018, Proceedings of the National Academy of Sciences.

[3]  L. Neckers,et al.  Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation , 2018, Nature Communications.

[4]  Tony Hunter,et al.  pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. , 2017, Current opinion in cell biology.

[5]  M. Bollen,et al.  The Ki-67 and RepoMan mitotic phosphatases assemble via an identical, yet novel mechanism , 2016, eLife.

[6]  M. Lazzara,et al.  Cell signaling regulation by protein phosphorylation: a multivariate, heterogeneous, and context-dependent process. , 2016, Current opinion in biotechnology.

[7]  E. Papaleo,et al.  The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2 , 2016, BMC Biology.

[8]  Sean J. Humphrey,et al.  Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation , 2015, Trends in Endocrinology & Metabolism.

[9]  A. Chaffotte,et al.  Quantitative and dynamic analysis of PTEN phosphorylation by NMR. , 2015, Methods.

[10]  L. Kay,et al.  Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch , 2014, Nature.

[11]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[12]  C. Seiser,et al.  Sensing core histone phosphorylation — A matter of perfect timing , 2014, Biochimica et biophysica acta.

[13]  Natalie G Ahn,et al.  Phosphorylation releases constraints to domain motion in ERK2 , 2014, Proceedings of the National Academy of Sciences.

[14]  W. Peti,et al.  Molecular basis of MAP kinase regulation , 2013, Protein science : a publication of the Protein Society.

[15]  M. Delepierre,et al.  Ordered phosphorylation events in two independent cascades of the PTEN C-tail revealed by NMR. , 2012, Journal of the American Chemical Society.

[16]  Jacques Côté,et al.  Histone phosphorylation , 2012, Epigenetics.

[17]  Philipp Selenko,et al.  Cell signaling, post-translational protein modifications and NMR spectroscopy , 2012, Journal of biomolecular NMR.

[18]  Gerhard Hummer,et al.  Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. , 2011, Nature chemical biology.

[19]  H. Schwalbe,et al.  NMR Spectroscopic Investigations of the Activated p38α Mitogen‐Activated Protein Kinase , 2011, ChemBioChem.

[20]  Florian Gnad,et al.  PHOSIDA 2011: the posttranslational modification database , 2010, Nucleic Acids Res..

[21]  Cathryn M. Gould,et al.  Phospho.ELM: a database of phosphorylation sites—update 2011 , 2010, Nucleic acids research.

[22]  Anna Tramontano,et al.  Phospho3D 2.0: an enhanced database of three-dimensional structures of phosphorylation sites , 2010, Nucleic Acids Res..

[23]  Andrea Musacchio,et al.  Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine , 2010, The Journal of cell biology.

[24]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[25]  Julie D Forman-Kay,et al.  NMR evidence for differential phosphorylation‐dependent interactions in WT and ΔF508 CFTR , 2010, The EMBO journal.

[26]  John A Tainer,et al.  The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. , 2009, Structure.

[27]  E. Kinoshita,et al.  Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE , 2009, Nature Protocols.

[28]  A. Nairn,et al.  Detailed structural characterization of unbound protein phosphatase 1 inhibitors. , 2008, Biochemistry.

[29]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[30]  James E. Ferrell,et al.  Mechanisms of specificity in protein phosphorylation , 2007, Nature Reviews Molecular Cell Biology.

[31]  Rebecca Page,et al.  Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. , 2007, Protein expression and purification.

[32]  Guozhi Zhu,et al.  Protein Kinase Specificity: A Strategic Collaboration between Kinase Peptide Specificity and Substrate Recruitment , 2005, Cell cycle.

[33]  L. Iakoucheva,et al.  The importance of intrinsic disorder for protein phosphorylation. , 2004, Nucleic acids research.

[34]  G. Superti-Furga,et al.  Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase , 2003, Cell.

[35]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[36]  A. Wilkinson,et al.  Structure of the Bacillus cell fate determinant SpoIIAA in phosphorylated and unphosphorylated forms. , 2001, Structure.

[37]  R. Aebersold,et al.  Mass spectrometry in proteomics. , 2001, Chemical reviews.

[38]  L. Johnson,et al.  Structural basis for control by phosphorylation. , 1997, Chemical reviews.

[39]  P. Cohen,et al.  The regulation of protein function by multisite phosphorylation--a 25 year update. , 2000, Trends in biochemical sciences.

[40]  J. Ninomiya-Tsuji,et al.  TAK1 Mitogen-activated Protein Kinase Kinase Kinase Is Activated by Autophosphorylation within Its Activation Loop* , 2000, The Journal of Biological Chemistry.

[41]  B. Schulman,et al.  Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Peter E Wright,et al.  Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions , 1997, Cell.

[43]  Elizabeth J. Goldsmith,et al.  Activation Mechanism of the MAP Kinase ERK2 by Dual Phosphorylation , 1997, Cell.

[44]  M. Cobb,et al.  Reconstitution of Mitogen-activated Protein Kinase Phosphorylation Cascades in Bacteria , 1997, The Journal of Biological Chemistry.

[45]  Michael J. Eck,et al.  Three-dimensional structure of the tyrosine kinase c-Src , 1997, Nature.

[46]  C. Vinson,et al.  Phosphorylation destabilizes α-helices , 1997, Nature Structural Biology.

[47]  Hiroto Yamaguchi,et al.  Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation , 1996, Nature.

[48]  Paul R. Caron,et al.  Crystal Structure of p38 Mitogen-activated Protein Kinase* , 1996, The Journal of Biological Chemistry.

[49]  L. Johnson,et al.  Active and Inactive Protein Kinases: Structural Basis for Regulation , 1996, Cell.

[50]  S. Hubbard,et al.  Crystal structure of the tyrosine kinase domain of the human insulin receptor , 1994, Nature.

[51]  Tony Hunter,et al.  The regulation of transcription by phosphorylation , 1992, Cell.

[52]  A G Leslie,et al.  Crystal structure of uncleaved ovalbumin at 1.95 A resolution. , 1991, Journal of molecular biology.