Stability concepts and their applications
暂无分享,去创建一个
[1] Oscar Angulo,et al. Analysis of an efficient integrator for a size-structured population model with a dynamical resource , 2014, Comput. Math. Appl..
[2] J. Sanz-Serna,et al. Equivalence Theorems for Incomplete Spaces: An Appraisal , 1984 .
[3] Michael G. Crandall,et al. GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .
[4] J. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .
[5] W. Magnus. On the exponential solution of differential equations for a linear operator , 1954 .
[6] HU Qing-lin. Application of Mathematics , 2004 .
[7] H. Keller,et al. Approximation methods for nonlinear problems with application to two-point boundary value problems , 1975 .
[8] V. Thomée,et al. ON RATIONAL APPROXIMATIONS OF SEMIGROUPS , 1979 .
[9] J. M. Sanz-Serna,et al. Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation , 1990 .
[10] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[11] István Faragó,et al. CONVERGENCE AND STABILITY CONSTANT OF THE THETA-METHOD , 2013 .
[12] Wolfgang Hackbusch,et al. The Concept of Stability in Numerical Mathematics , 2014 .
[13] Evolution Semigroups and Product Formulas for Nonautonomous Cauchy Problems , 2000 .
[14] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[15] L. Kantorovich,et al. Functional analysis and applied mathematics , 1963 .
[16] Miklós E. Mincsovics,et al. Notes on the basic notions in nonlinear numerical analysis , 2012 .
[17] István Faragó,et al. A stability approach for reaction-diffusion problems , 2013, 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI).
[18] István Faragó,et al. Numerical stability for nonlinear evolution equations , 2015, Comput. Math. Appl..
[19] H. Hagiwara. On Nonlinear Evolution Equations in Banach Spaces , 1990 .
[20] J. M. Sanz-Serna,et al. A general equivalence theorem in the theory of discretization methods , 1985 .
[21] The Lax Equivalence Theorem for linear, inhomogeneous equations in L2 spaces , 1981 .
[22] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[23] T-Stability of General One-Step Methods for Abstract Initial-Value Problems , 2013 .
[24] W. Marsden. I and J , 2012 .
[25] Ernst Hairer,et al. Numerical methods for evolutionary differential equations , 2010, Math. Comput..
[26] Juan C. López-Marcos,et al. Numerical integration of a hierarchically size-structured population model with contest competition , 2014, J. Comput. Appl. Math..
[27] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[28] John A. Trangenstein,et al. Numerical Solution of Hyperbolic Partial Differential Equations , 2009 .
[29] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[30] B. Farkas,et al. Operator Splitting with Spatial-temporal Discretization , 2011, 1103.0316.
[31] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[32] L. Brouwer. Beweis der Invarianz der geschlossenen Kurve , 1912 .
[33] I. Fekete. N-STABILITY OF THE -METHOD FOR REACTION-DIFFUSION PROBLEMS , 2014 .
[34] H. Brezis,et al. Convergence and approximation of semigroups of nonlinear operators in Banach spaces , 1972 .
[35] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods , 1995 .
[36] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[37] J. Miller. Numerical Analysis , 1966, Nature.
[38] I. Faragó,et al. Weighted sequential splittings and their analysis , 2005 .
[39] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[40] J. Goldstein. Approximation of nonlinear semigroups and evolution equations , 1972 .
[41] H. Trotter. Approximation of semi-groups of operators , 1958 .
[42] H. Stetter. Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .
[43] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[44] Kazufumi Ito,et al. Evolution Equations And Approximations , 2002, Series on Advances in Mathematics for Applied Sciences.
[45] Felix E. Browder,et al. Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces , 1967 .
[46] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[47] A study of the recursion Yn + 1 = Yn + TYmn , 1986 .
[48] Petra Csomós,et al. Operator splittings and spatial approximations for evolution equations , 2008, 0810.1694.
[49] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[50] Jürgen Geiser,et al. Iterative operator-splitting methods for linear problems , 2007, Int. J. Comput. Sci. Eng..
[51] R. D. Richtmyer,et al. Survey of the stability of linear finite difference equations , 1956 .