Stability concepts and their applications

The stability is one of the most basic requirement for the numerical model, which is mostly elaborated for the linear problems. In this paper we analyze the stability notions for the nonlinear problems. We show that, in case of consistency, both the N-stability and K-stability notions guarantee the convergence. Moreover, by using the N-stability we prove the convergence of the centralized Crank–Nicolson-method for the periodic initial-value transport equation. The K-stability is applied for the investigation of the forward Euler method and the θ-method for the Cauchy problem with Lipschitzian right side.

[1]  Oscar Angulo,et al.  Analysis of an efficient integrator for a size-structured population model with a dynamical resource , 2014, Comput. Math. Appl..

[2]  J. Sanz-Serna,et al.  Equivalence Theorems for Incomplete Spaces: An Appraisal , 1984 .

[3]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[4]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[5]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[6]  HU Qing-lin Application of Mathematics , 2004 .

[7]  H. Keller,et al.  Approximation methods for nonlinear problems with application to two-point boundary value problems , 1975 .

[8]  V. Thomée,et al.  ON RATIONAL APPROXIMATIONS OF SEMIGROUPS , 1979 .

[9]  J. M. Sanz-Serna,et al.  Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation , 1990 .

[10]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[11]  István Faragó,et al.  CONVERGENCE AND STABILITY CONSTANT OF THE THETA-METHOD , 2013 .

[12]  Wolfgang Hackbusch,et al.  The Concept of Stability in Numerical Mathematics , 2014 .

[13]  Evolution Semigroups and Product Formulas for Nonautonomous Cauchy Problems , 2000 .

[14]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[15]  L. Kantorovich,et al.  Functional analysis and applied mathematics , 1963 .

[16]  Miklós E. Mincsovics,et al.  Notes on the basic notions in nonlinear numerical analysis , 2012 .

[17]  István Faragó,et al.  A stability approach for reaction-diffusion problems , 2013, 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI).

[18]  István Faragó,et al.  Numerical stability for nonlinear evolution equations , 2015, Comput. Math. Appl..

[19]  H. Hagiwara On Nonlinear Evolution Equations in Banach Spaces , 1990 .

[20]  J. M. Sanz-Serna,et al.  A general equivalence theorem in the theory of discretization methods , 1985 .

[21]  The Lax Equivalence Theorem for linear, inhomogeneous equations in L2 spaces , 1981 .

[22]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[23]  T-Stability of General One-Step Methods for Abstract Initial-Value Problems , 2013 .

[24]  W. Marsden I and J , 2012 .

[25]  Ernst Hairer,et al.  Numerical methods for evolutionary differential equations , 2010, Math. Comput..

[26]  Juan C. López-Marcos,et al.  Numerical integration of a hierarchically size-structured population model with contest competition , 2014, J. Comput. Appl. Math..

[27]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[28]  John A. Trangenstein,et al.  Numerical Solution of Hyperbolic Partial Differential Equations , 2009 .

[29]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[30]  B. Farkas,et al.  Operator Splitting with Spatial-temporal Discretization , 2011, 1103.0316.

[31]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[32]  L. Brouwer Beweis der Invarianz der geschlossenen Kurve , 1912 .

[33]  I. Fekete N-STABILITY OF THE -METHOD FOR REACTION-DIFFUSION PROBLEMS , 2014 .

[34]  H. Brezis,et al.  Convergence and approximation of semigroups of nonlinear operators in Banach spaces , 1972 .

[35]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[36]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[37]  J. Miller Numerical Analysis , 1966, Nature.

[38]  I. Faragó,et al.  Weighted sequential splittings and their analysis , 2005 .

[39]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[40]  J. Goldstein Approximation of nonlinear semigroups and evolution equations , 1972 .

[41]  H. Trotter Approximation of semi-groups of operators , 1958 .

[42]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[43]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[44]  Kazufumi Ito,et al.  Evolution Equations And Approximations , 2002, Series on Advances in Mathematics for Applied Sciences.

[45]  Felix E. Browder,et al.  Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces , 1967 .

[46]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[47]  A study of the recursion Yn + 1 = Yn + TYmn , 1986 .

[48]  Petra Csomós,et al.  Operator splittings and spatial approximations for evolution equations , 2008, 0810.1694.

[49]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[50]  Jürgen Geiser,et al.  Iterative operator-splitting methods for linear problems , 2007, Int. J. Comput. Sci. Eng..

[51]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .