Reduction of coupled field models for the simulation of electrical machines and power electronic modules

In automotive applications, the thermal dissipation of power electronics modules in mechatronic products is constantly increasing, whereas these products are confined in increasingly reduced volumes. During their operation, the semiconductor components and their environment are then submitted to severe electro-thermo-mechanical stresses that could cause their damage and lead to the product failure. The reliability and lifetime prevision of such products depend on the temperature junction located at the chip of power components. Furthermore, in order to ensure the safe operation of embedded applications, it is essential to perform a real-time control of thermal parameters such as the junction temperatures and power dissipated on the power components, in addition to the electrical and mechanical parameters. The objective of this thesis is to develop an identification method aimed at producing reduced thermal models to estimate the thermal behaviour of power electronic modules. Designed in a non-intrusive framework, this method post-processes the input data and the results produced by the numerical simulation of a detailed of the system under study. In this thesis, a new identification method, called "Kernel Identification Method" is developed. It has been validated on an industrial application dealing with a thermally coupled solid / fluid problem mainly governed by forced convection. An exploratory study of nonlinear problems identification where the natural convection plays the dominant role is then proposed. To this end, two identification methods of nonparametric nature are proposed: (i) a method based on the extension of the Kernel Identification Method; and (ii) a second method based on the "unscented" variant of the Kalman filter.

[1]  Jian Ye,et al.  A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting , 2008 .

[2]  Jan Swevers,et al.  A subspace algorithm for the identification of discrete time frequency domain power spectra , 1997, Autom..

[3]  Giorgio Picci,et al.  Stochastic realization with exogenous inputs and 'subspace-methods' identification , 1996, Signal Process..

[4]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[5]  M. Sachdev,et al.  Thermal runaway in integrated circuits , 2006, IEEE Transactions on Device and Materials Reliability.

[6]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[7]  E. Videcoq,et al.  Thermal control via state feedback using a low order model built from experimental data by the Modal Identification Method , 2012 .

[8]  Seung-Hwan Yu,et al.  Effect of radiation in a radial heat sink under natural convection , 2012 .

[9]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[10]  Akira Ohsumi,et al.  Subspace identification for continuous-time stochastic systems via distribution-based approach , 2002, Autom..

[11]  D.S. Bernstein,et al.  Subspace-based identification for linear and nonlinear systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[12]  T. Söderström,et al.  Least squares parameter estimation of continuous-time ARX models from discrete-time data , 1997, IEEE Trans. Autom. Control..

[13]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[14]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[15]  Lukas Ferkl,et al.  Ceiling radiant cooling: Comparison of ARMAX and subspace identification modelling methods , 2010 .

[16]  S. Fassois MIMO LMS-ARMAX IDENTIFICATION OF VIBRATING STRUCTURES—PART I: THE METHOD , 2001 .

[17]  D. Rixen A dual Craig-Bampton method for dynamic substructuring , 2004 .

[18]  frederique da silva,et al.  Méthodologies de réduction de modèles multiphysiques pour la conception et la commande d’une chaîne de traction électrique , 2015 .

[19]  Louis B. Bushard,et al.  On the value of Guyan Reduction in dynamic thermal problems , 1981 .

[20]  Morten Bisgaard,et al.  Adaptive control system for autonomous helicopter slung load operations , 2010 .

[21]  Vincent Faucher,et al.  A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics , 2003 .

[22]  R. Pearson,et al.  Nonlinear discrete-time models: state-space vs. I/O representations , 2004 .

[23]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[24]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[25]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[26]  J. W. Sofia Analysis of thermal transient data with synthesized dynamic models for semiconductor devices , 1994 .

[27]  D. Schweitzer Thermal Transient Multisource Simulation Using Cubic Spline Interpolation of Zth Functions , 2006 .

[28]  Karl Johan Åström Maximum likelihood and prediction error methods , 1980, Autom..

[29]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[30]  Franklin Fa-Kun Kuo,et al.  Network analysis and synthesis , 1962 .

[31]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[32]  Yogendra Joshi,et al.  Error estimation in POD-based dynamic reduced-order thermal modeling of data centers , 2013 .

[33]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[34]  Daniel J. Rixen,et al.  Efficient weakly coupled projection basis for the reduction of thermo-mechanical models , 2010, J. Comput. Appl. Math..

[35]  Cédric Leblond,et al.  An optimal projection method for the reduced-order modeling of incompressible flows , 2011 .

[36]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[37]  Thermal interaction model between a fluid flow and a solid , 2009 .

[38]  Jordi Palacín,et al.  A time-domain method for the analysis of thermal impedance response preserving the convolution form , 1999 .

[39]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[40]  A. Kropp,et al.  Efficient Broadband Vibro-Acoustic Analysis of Passenger Car Bodies Using an FE-Based Component Mode Synthesis Approach , 2003 .

[41]  S. S. Kang Advanced Cooling for Power Electronics , 2012, 2012 7th International Conference on Integrated Power Electronics Systems (CIPS).

[42]  GOAL-ORIENTED LOW-RANK APPROXIMATIONS FOR HIGH DIMENSIONAL STOCHASTIC PROBLEMS , 2013 .

[43]  Barry W. Boehm,et al.  Software Engineering Economics , 1993, IEEE Transactions on Software Engineering.

[44]  Masanao Aoki,et al.  Two Complementary Representations of Multiple Time Series in State Space Innovation Forms , 1994 .

[45]  L. Litz,et al.  State decomposition for singular perturbation order reduction—A modal approach† , 1981 .

[46]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[47]  F. N. Masana,et al.  A new approach to the dynamic thermal modelling of semiconductor packages , 2001, Microelectron. Reliab..

[48]  Uday B. Desai,et al.  Nonlinear Target Identification and Tracking Using UKF , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[50]  Y. Rouizi,et al.  Numerical model reduction of 2D steady incompressible laminar flows: Application on the flow over a backward-facing step , 2009, J. Comput. Phys..

[51]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[52]  Shengwei Wang,et al.  Multiple ARMAX modeling scheme for forecasting air conditioning system performance , 2007 .

[53]  Siamak Niroomandi,et al.  Model order reduction in hyperelasticity: a proper generalized decomposition approach , 2013 .

[54]  The Reduced Basis Method in Control Problems , 1993 .

[55]  Patrick Dubus,et al.  Thermal pre-dimensioning methodology based on thermal impedance , 2010, 2010 6th International Conference on Integrated Power Electronics Systems.

[56]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[57]  J. Rambo,et al.  Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management , 2006 .

[58]  片山 徹 Subspace methods for system identification , 2005 .

[59]  Amélie Allard,et al.  A Linear Data-Driven System Identification Methodology for an Active/Passive Solar Thermal Storage System and Application to a Solar House , 2013 .

[60]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[61]  Joseph C. S. Lai,et al.  ARMAX modal parameter identification in the presence of unmeasured excitation—I: Theoretical background , 2007 .

[62]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[63]  Hiroyuki Ozoe, Wen-Quan Tao A Modified Pressure-Correction Scheme for the SIMPLER Method, MSIMPLER , 2001 .

[64]  M. Cooper,et al.  Impact of junction temperature on microelectronic device reliability and considerations for space applications , 2003, IEEE International Integrated Reliability Workshop Final Report, 2003.

[65]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[66]  James V. Candy,et al.  Model-Based Signal Processing , 1985 .

[67]  Dr. Martin März,et al.  Thermal Modeling of Power-electronic Systems , 2000 .

[68]  M. P. Païdoussis,et al.  Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method , 2003 .

[69]  Muhammad Rashid SPICE for Power Electronics and Electric Power, Third Edition (Rashid, M.H.; 2012) [Book News] , 2013, IEEE Industrial Electronics Magazine.

[70]  Mehdi Karrari,et al.  Two-dimensional ARMA model order determination. , 2009, ISA transactions.

[71]  Katja Bachmeier,et al.  Numerical Heat Transfer And Fluid Flow , 2016 .

[72]  Michael Beitelschmidt,et al.  Comparison of model reduction techniques for large mechanical systems , 2008 .

[73]  D. H. Zhou,et al.  A real-time estimation approach to time-varying time delay and parameters of NARX processes , 2000 .

[74]  C. Allery,et al.  An adaptive ROM approach for solving transfer equations , 2006 .

[75]  Stefano Zucca,et al.  Reduced-Order Models for the Calculation of Thermal Transients of Heat Conduction/Convection FE Models , 2007 .

[76]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[77]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[78]  Mohamed Hamdaoui,et al.  POD-ISAT : An Efficient Reduced-order Modeling Method for the representation of Parametrized Finite Element solutions. Application to Aircraft Air Control Systems , 2012 .

[79]  E. Beyne,et al.  Transient thermal modeling and characterization of a hybrid component , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[80]  Jie Sheng,et al.  Least squares based iterative parameter estimation algorithm for multivariable controlled ARMA system modelling with finite measurement data , 2011, Math. Comput. Model..

[81]  Adrien Bobillot,et al.  Méthodes de réduction pour le recalage : application au cas d'Ariane 5 , 2002 .

[82]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[83]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[84]  D. S. Bernstein,et al.  Subspace identification for non-linear systems with measured-input non-linearities , 2005 .

[85]  Jean-Philippe Noël,et al.  Frequency-domain subspace identification for nonlinear mechanical systems , 2013 .

[86]  S. Billings,et al.  Volterra series truncation and reduction in the frequency domain for weakly nonlinear system , 2006 .

[87]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[88]  G. Wagner A study of the maximum theoretical power dissipation of tablets under natural convection conditions , 2014, 20th International Workshop on Thermal Investigations of ICs and Systems.

[89]  Joseph C. S. Lai,et al.  ARMAX modal parameter identification in the presence of unmeasured excitation—II: Numerical and experimental verification , 2007 .

[90]  D. Veyret,et al.  A Modal Identification Method To Reduce A High-Order Model: Application To Heat Conduction Modelling , 1997 .

[91]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[92]  E. Dallago,et al.  Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory , 1998 .

[93]  N. S. Khalid On-and off-line identification of linear state space models , 2012 .

[94]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[95]  M. Moonen,et al.  QSVD approach to on- and off-line state-space identification , 1990 .

[96]  Development of an Extended Quadratic Tetrahedron for Finite Element Analysis of Navier-Stokes Problems , 2003 .

[97]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[98]  G. Wachutka,et al.  Calculation of the temperature development in electronic systems by convolution integrals , 2000, Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068).

[99]  Jr. J.J. LaViola,et al.  A comparison of unscented and extended Kalman filtering for estimating quaternion motion , 2003, Proceedings of the 2003 American Control Conference, 2003..

[100]  Hong Wang,et al.  Applying a novel extended Kalman filter to missile-target interception with APN guidance law: A benchmark case study , 2010 .

[101]  A. Kienle,et al.  Reduction procedure for parametrized fluid dynamics problems based on proper orthogonal decomposition and calibration , 2010 .

[102]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[103]  Daniel Petit,et al.  Model reduction in linear heat conduction: use of interface fluxes for the numerical coupling , 1998 .

[104]  Jean-Philippe Noël,et al.  Subspace-based identification of a nonlinear spacecraft in the time and frequency domains , 2014 .

[105]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[106]  Robert L. Towner,et al.  An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models , 2012 .

[107]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[108]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[109]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[110]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[111]  C. C. Chan,et al.  Nonlinear identification of power electronic systems , 1995, Proceedings of 1995 International Conference on Power Electronics and Drive Systems. PEDS 95.

[112]  Kotaro Hirasawa,et al.  A homotopy approach to improving PEM identification of ARMAX models , 2001, Autom..

[113]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[114]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[115]  George A. Bekey,et al.  System identification- an introduction and a survey , 1970 .

[116]  G. Nicoletti,et al.  Fast power cycling test of IGBT modules in traction application , 1997, Proceedings of Second International Conference on Power Electronics and Drive Systems.

[117]  O. Quéméner,et al.  The Modal Substructuring Method: An Efficient Technique for Large-Size Numerical Simulations , 2011 .

[118]  Gaël Chevallier,et al.  System Identification Using Kalman Filters , 2014 .

[119]  Daniel Petit,et al.  Model reduction through identification - Application to some diffusion-convection problems in heat transfer, with an extension towards control strategies , 2013 .

[120]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[121]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[122]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[123]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[124]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .

[125]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[126]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[127]  Christian Soize,et al.  Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures , 2013 .

[128]  Daniel Petit,et al.  Identification methods in nonlinear heat conduction. Part II: inverse problem using a reduced model , 2005 .

[129]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[130]  V. Székely,et al.  Fine structure of heat flow path in semiconductor devices: a measurement and identification method , 1988 .

[131]  V. Szekely,et al.  On the representation of infinite-length distributed RC one-ports , 1991 .

[132]  Abhishek K Gupta,et al.  Numerical Methods using MATLAB , 2014, Apress.

[133]  Jan G. Korvink,et al.  Fast Simulation of Electro-Thermal MEMS: Efficient Dynamic Compact Models , 2006 .

[134]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[135]  Y. Favennec,et al.  The adjoint method coupled with the modal identification method for nonlinear model reduction , 2006 .

[136]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[137]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[138]  Siglas de Palabras a. J. C. , 2013 .

[139]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[140]  Marc P. Mignolet,et al.  Modelling and prediction of machining errors using ARMAX and NARMAX structures , 2003 .

[141]  Daniel Petit,et al.  Model reduction by the Modal Identification Method in forced convection: Application to a heated flow over a backward-facing step , 2010 .

[142]  Yaman Arkun,et al.  A global solution to the nonlinear model predictive control algorithms using polynomial ARX models , 1997 .