The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility

[1]  William R. Stauffer,et al.  Dopamine neurons learn relative chosen value from probabilistic rewards , 2016, eLife.

[2]  William R. Stauffer,et al.  Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques , 2016, Cell.

[3]  Ben A. Duffy,et al.  Supplemental Information Activation of Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide Responses , 2022 .

[4]  M. Howe,et al.  Rapid signaling in distinct dopaminergic axons during locomotion and reward , 2016, Nature.

[5]  Wolfram Schultz,et al.  Utility functions predict variance and skewness risk preferences in monkeys , 2016, Proceedings of the National Academy of Sciences.

[6]  Thomas Wichmann,et al.  Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys , 2016, The Journal of Neuroscience.

[7]  Jakob K. Dreyer,et al.  Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism , 2016, Proceedings of the National Academy of Sciences.

[8]  Ilana B. Witten,et al.  Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target , 2016, Nature Neuroscience.

[9]  Eric A. Yttri,et al.  Opponent and bidirectional control of movement velocity in the basal ganglia , 2016, Nature.

[10]  Wolfram Schultz,et al.  Dopamine reward prediction-error signalling: a two-component response , 2016, Nature Reviews Neuroscience.

[11]  N. Uchida,et al.  Dopamine neurons share common response function for reward prediction error , 2016, Nature Neuroscience.

[12]  G. Stuber,et al.  Physiological state gates acquisition and expression of mesolimbic reward prediction signals , 2016, Proceedings of the National Academy of Sciences.

[13]  Vaughn L. Hetrick,et al.  Mesolimbic Dopamine Signals the Value of Work , 2015, Nature Neuroscience.

[14]  P. Phillips,et al.  Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward , 2015, Proceedings of the National Academy of Sciences.

[15]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[16]  W. Schultz Neuronal Reward and Decision Signals: From Theories to Data. , 2015, Physiological reviews.

[17]  Naoshige Uchida,et al.  Arithmetic and local circuitry underlying dopamine prediction errors , 2015, Nature.

[18]  P. Kalivas,et al.  Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections , 2015, Nature Neuroscience.

[19]  Joseph W. Barter,et al.  Beyond reward prediction errors: the role of dopamine in movement kinematics , 2015, Front. Integr. Neurosci..

[20]  S. Bouret,et al.  Noradrenaline and Dopamine Neurons in the Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys , 2015, The Journal of Neuroscience.

[21]  Ilana B. Witten,et al.  Mesolimbic Dopamine Dynamically Tracks, and Is Causally Linked to, Discrete Aspects of Value-Based Decision Making , 2015, Biological Psychiatry.

[22]  J. Canales,et al.  The trace amine-associated receptor 1 modulates methamphetamine's neurochemical and behavioral effects , 2015, Front. Neurosci..

[23]  William R. Stauffer,et al.  Dopamine Reward Prediction Error Responses Reflect Marginal Utility , 2014, Current Biology.

[24]  S. Floresco,et al.  Overriding Phasic Dopamine Signals Redirects Action Selection during Risk/Reward Decision Making , 2014, Neuron.

[25]  W. Vanduffel,et al.  Role of the Primate Ventral Tegmental Area in Reinforcement and Motivation , 2014, Current Biology.

[26]  William R. Stauffer,et al.  Dopamine prediction error responses integrate subjective value from different reward dimensions , 2014, Proceedings of the National Academy of Sciences.

[27]  S. Ikemoto,et al.  Similar Roles of Substantia Nigra and Ventral Tegmental Dopamine Neurons in Reward and Aversion , 2014, The Journal of Neuroscience.

[28]  David L. Sheinberg,et al.  Optogenetic and Electrical Microstimulation Systematically Bias Visuospatial Choice in Primates , 2014, Current Biology.

[29]  Doris Y. Tsao,et al.  Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field , 2013, The Journal of Neuroscience.

[30]  Masayuki Matsumoto,et al.  Distinct Representations of Cognitive and Motivational Signals in Midbrain Dopamine Neurons , 2013, Neuron.

[31]  C. Fiorillo Two Dimensions of Value: Dopamine Neurons Represent Reward But Not Aversiveness , 2013, Science.

[32]  A. Graybiel,et al.  Prolonged Dopamine Signalling in Striatum Signals Proximity and Value of Distant Rewards , 2013, Nature.

[33]  B. Moghaddam,et al.  Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection. , 2013, Journal of neurophysiology.

[34]  Josiah R. Boivin,et al.  A Causal Link Between Prediction Errors, Dopamine Neurons and Learning , 2013, Nature Neuroscience.

[35]  R. Turner,et al.  Limited Encoding of Effort by Dopamine Neurons in a Cost–Benefit Trade-off Task , 2013, The Journal of Neuroscience.

[36]  Minryung R. Song,et al.  Diversity and Homogeneity in Responses of Midbrain Dopamine Neurons , 2013, The Journal of Neuroscience.

[37]  Minryung R. Song,et al.  Multiphasic Temporal Dynamics in Responses of Midbrain Dopamine Neurons to Appetitive and Aversive Stimuli , 2013, The Journal of Neuroscience.

[38]  Edward S. Boyden,et al.  Optogenetic Inactivation Modifies Monkey Visuomotor Behavior , 2012, Neuron.

[39]  Thomas Wichmann,et al.  In Vivo Optogenetic Control of Striatal and Thalamic Neurons in Non-Human Primates , 2012, PloS one.

[40]  W. Schultz,et al.  Prediction of economic choice by primate amygdala neurons , 2012, Proceedings of the National Academy of Sciences.

[41]  E. Oleson,et al.  Subsecond Dopamine Release in the Nucleus Accumbens Predicts Conditioned Punishment and Its Successful Avoidance , 2012, The Journal of Neuroscience.

[42]  Mehrdad Jazayeri,et al.  Saccadic eye movements evoked by optogenetic activation of primate V1 , 2012, Nature Neuroscience.

[43]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[44]  L. Wilbrecht,et al.  Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value , 2012, Nature Neuroscience.

[45]  Bruce R. Rosen,et al.  Optogenetically Induced Behavioral and Functional Network Changes in Primates , 2012, Current Biology.

[46]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[47]  C. Fiorillo,et al.  Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement , 2012, PloS one.

[48]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[49]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[50]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[51]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[52]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[53]  R. Romo,et al.  Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions , 2011, Proceedings of the National Academy of Sciences.

[54]  K. Deisseroth,et al.  Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior , 2011, The Journal of Neuroscience.

[55]  Matthew T. Kaufman,et al.  An optogenetic toolbox designed for primates , 2011, Nature Neuroscience.

[56]  榎本 一紀 Dopamine neurons learn to encode the long-term value of multiple future rewards , 2011 .

[57]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[58]  Takeo Watanabe,et al.  Temporally Extended Dopamine Responses to Perceptually Demanding Reward-Predictive Stimuli , 2010, The Journal of Neuroscience.

[59]  Joshua L. Jones,et al.  Phasic Nucleus Accumbens Dopamine Release Encodes Effort- and Delay-Related Costs , 2010, Biological Psychiatry.

[60]  Hagai Bergman,et al.  Synchronization of Midbrain Dopaminergic Neurons Is Enhanced by Rewarding Events , 2009, Neuron.

[61]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[62]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[63]  R. Palmiter,et al.  Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior , 2009, Proceedings of the National Academy of Sciences.

[64]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[65]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[66]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[67]  W. Schultz,et al.  Influence of Reward Delays on Responses of Dopamine Neurons , 2008, The Journal of Neuroscience.

[68]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[69]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[70]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[71]  W. Schultz Behavioral dopamine signals , 2007, Trends in Neurosciences.

[72]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[73]  W. Schultz,et al.  The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation , 1983, Experimental Brain Research.

[74]  Tatsuo K Sato,et al.  Correlated Coding of Motivation and Outcome of Decision by Dopamine Neurons , 2003, The Journal of Neuroscience.

[75]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[76]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[77]  J. Hollerman,et al.  Influence of reward expectation on behavior-related neuronal activity in primate striatum. , 1998, Journal of neurophysiology.

[78]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[79]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[81]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[82]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[84]  W. Schultz,et al.  Responses of monkey midbrain dopamine neurons during delayed alternation performance , 1991, Brain Research.

[85]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. , 1990, Journal of neurophysiology.

[86]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. , 1990, Journal of neurophysiology.

[87]  W. Schultz,et al.  Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. , 1987, Journal of neurophysiology.

[88]  W. Schultz Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. , 1986, Journal of neurophysiology.

[89]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  M. D. Crutcher,et al.  Relations between movement and single cell discharge in the substantia nigra of the behaving monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[92]  J. Pearce,et al.  A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980, Psychological review.

[93]  T. Caraco,et al.  An empirical demonstration of risk-sensitive foraging preferences , 1980, Animal Behaviour.

[94]  Louis A. Chiodo,et al.  Sensory stimuli alter discharge rate of dopamine (DA) neurons: evidence for two functional types of DA cells in the substantia nigra , 1980, Brain Research.

[95]  R. Wise,et al.  Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study , 1980, Brain Research.

[96]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[97]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[98]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.